⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r200_swtcl.c

📁 Mesa is an open-source implementation of the OpenGL specification - a system for rendering interacti
💻 C
📖 第 1 页 / 共 2 页
字号:
/*Copyright (C) The Weather Channel, Inc.  2002.  All Rights Reserved.The Weather Channel (TM) funded Tungsten Graphics to develop theinitial release of the Radeon 8500 driver under the XFree86 license.This notice must be preserved.Permission is hereby granted, free of charge, to any person obtaininga copy of this software and associated documentation files (the"Software"), to deal in the Software without restriction, includingwithout limitation the rights to use, copy, modify, merge, publish,distribute, sublicense, and/or sell copies of the Software, and topermit persons to whom the Software is furnished to do so, subject tothe following conditions:The above copyright notice and this permission notice (including thenext paragraph) shall be included in all copies or substantialportions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BELIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTIONOF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.**************************************************************************//* * Authors: *   Keith Whitwell <keith@tungstengraphics.com> */#include "glheader.h"#include "mtypes.h"#include "colormac.h"#include "enums.h"#include "image.h"#include "imports.h"#include "macros.h"#include "swrast/s_context.h"#include "swrast/s_fog.h"#include "swrast_setup/swrast_setup.h"#include "math/m_translate.h"#include "tnl/tnl.h"#include "tnl/t_context.h"#include "tnl/t_pipeline.h"#include "r200_context.h"#include "r200_ioctl.h"#include "r200_state.h"#include "r200_swtcl.h"#include "r200_tcl.h"static void flush_last_swtcl_prim( r200ContextPtr rmesa  );/*********************************************************************** *                         Initialization  ***********************************************************************/#define EMIT_ATTR( ATTR, STYLE, F0 )					\do {									\   rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].attrib = (ATTR);	\   rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].format = (STYLE);	\   rmesa->swtcl.vertex_attr_count++;					\   fmt_0 |= F0;								\} while (0)#define EMIT_PAD( N )							\do {									\   rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].attrib = 0;		\   rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].format = EMIT_PAD;	\   rmesa->swtcl.vertex_attrs[rmesa->swtcl.vertex_attr_count].offset = (N);		\   rmesa->swtcl.vertex_attr_count++;					\} while (0)static void r200SetVertexFormat( GLcontext *ctx ){   r200ContextPtr rmesa = R200_CONTEXT( ctx );   TNLcontext *tnl = TNL_CONTEXT(ctx);   struct vertex_buffer *VB = &tnl->vb;   DECLARE_RENDERINPUTS(index_bitset);   int fmt_0 = 0;   int fmt_1 = 0;   int offset = 0;   RENDERINPUTS_COPY( index_bitset, tnl->render_inputs_bitset );   /* Important:    */   if ( VB->NdcPtr != NULL ) {      VB->AttribPtr[VERT_ATTRIB_POS] = VB->NdcPtr;   }   else {      VB->AttribPtr[VERT_ATTRIB_POS] = VB->ClipPtr;   }   assert( VB->AttribPtr[VERT_ATTRIB_POS] != NULL );   rmesa->swtcl.vertex_attr_count = 0;   /* EMIT_ATTR's must be in order as they tell t_vertex.c how to    * build up a hardware vertex.    */   if ( !rmesa->swtcl.needproj ||       RENDERINPUTS_TEST_RANGE( index_bitset, _TNL_FIRST_TEX, _TNL_LAST_TEX )) { /* need w coord for projected textures */      EMIT_ATTR( _TNL_ATTRIB_POS, EMIT_4F, R200_VTX_XY | R200_VTX_Z0 | R200_VTX_W0 );      offset = 4;   }   else {      EMIT_ATTR( _TNL_ATTRIB_POS, EMIT_3F, R200_VTX_XY | R200_VTX_Z0 );      offset = 3;   }   if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_POINTSIZE )) {      EMIT_ATTR( _TNL_ATTRIB_POINTSIZE, EMIT_1F, R200_VTX_POINT_SIZE );      offset += 1;   }   rmesa->swtcl.coloroffset = offset;#if MESA_LITTLE_ENDIAN    EMIT_ATTR( _TNL_ATTRIB_COLOR0, EMIT_4UB_4F_RGBA, (R200_VTX_PK_RGBA << R200_VTX_COLOR_0_SHIFT) );#else   EMIT_ATTR( _TNL_ATTRIB_COLOR0, EMIT_4UB_4F_ABGR, (R200_VTX_PK_RGBA << R200_VTX_COLOR_0_SHIFT) );#endif   offset += 1;   rmesa->swtcl.specoffset = 0;   if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_COLOR1 ) ||       RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_FOG )) {#if MESA_LITTLE_ENDIAN       if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_COLOR1 )) {	 rmesa->swtcl.specoffset = offset;	 EMIT_ATTR( _TNL_ATTRIB_COLOR1, EMIT_3UB_3F_RGB, (R200_VTX_PK_RGBA << R200_VTX_COLOR_1_SHIFT) );      }      else {	 EMIT_PAD( 3 );      }      if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_FOG )) {	 EMIT_ATTR( _TNL_ATTRIB_FOG, EMIT_1UB_1F, (R200_VTX_PK_RGBA << R200_VTX_COLOR_1_SHIFT) );      }      else {	 EMIT_PAD( 1 );      }#else      if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_FOG )) {	 EMIT_ATTR( _TNL_ATTRIB_FOG, EMIT_1UB_1F, (R200_VTX_PK_RGBA << R200_VTX_COLOR_1_SHIFT) );      }      else {	 EMIT_PAD( 1 );      }      if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_COLOR1 )) {	 rmesa->swtcl.specoffset = offset;	 EMIT_ATTR( _TNL_ATTRIB_COLOR1, EMIT_3UB_3F_BGR, (R200_VTX_PK_RGBA << R200_VTX_COLOR_1_SHIFT) );      }      else {	 EMIT_PAD( 3 );      }#endif   }   if (RENDERINPUTS_TEST_RANGE( index_bitset, _TNL_FIRST_TEX, _TNL_LAST_TEX )) {      int i;      for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {	 if (RENDERINPUTS_TEST( index_bitset, _TNL_ATTRIB_TEX(i) )) {	    GLuint sz = VB->TexCoordPtr[i]->size;	    fmt_1 |= sz << (3 * i);	    EMIT_ATTR( _TNL_ATTRIB_TEX0+i, EMIT_1F + sz - 1, 0 );	 }      }   }   if ( (rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] & R200_FOG_USE_MASK)      != R200_FOG_USE_SPEC_ALPHA ) {      R200_STATECHANGE( rmesa, ctx );      rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] &= ~R200_FOG_USE_MASK;      rmesa->hw.ctx.cmd[CTX_PP_FOG_COLOR] |= R200_FOG_USE_SPEC_ALPHA;   }   if (!RENDERINPUTS_EQUAL( rmesa->tnl_index_bitset, index_bitset ) ||	(rmesa->hw.vtx.cmd[VTX_VTXFMT_0] != fmt_0) ||	(rmesa->hw.vtx.cmd[VTX_VTXFMT_1] != fmt_1) ) {      R200_NEWPRIM(rmesa);      R200_STATECHANGE( rmesa, vtx );      rmesa->hw.vtx.cmd[VTX_VTXFMT_0] = fmt_0;      rmesa->hw.vtx.cmd[VTX_VTXFMT_1] = fmt_1;      rmesa->swtcl.vertex_size =	  _tnl_install_attrs( ctx,			      rmesa->swtcl.vertex_attrs, 			      rmesa->swtcl.vertex_attr_count,			      NULL, 0 );      rmesa->swtcl.vertex_size /= 4;      RENDERINPUTS_COPY( rmesa->tnl_index_bitset, index_bitset );   }}static void r200RenderStart( GLcontext *ctx ){   r200ContextPtr rmesa = R200_CONTEXT( ctx );   r200SetVertexFormat( ctx );   if (rmesa->dma.flush != 0 &&        rmesa->dma.flush != flush_last_swtcl_prim)      rmesa->dma.flush( rmesa );}/** * Set vertex state for SW TCL.  The primary purpose of this function is to * determine in advance whether or not the hardware can / should do the * projection divide or Mesa should do it. */void r200ChooseVertexState( GLcontext *ctx ){   r200ContextPtr rmesa = R200_CONTEXT( ctx );   TNLcontext *tnl = TNL_CONTEXT(ctx);   GLuint vte;   GLuint vap;   /* We must ensure that we don't do _tnl_need_projected_coords while in a    * rasterization fallback.  As this function will be called again when we    * leave a rasterization fallback, we can just skip it for now.    */   if (rmesa->Fallback != 0)      return;   vte = rmesa->hw.vte.cmd[VTE_SE_VTE_CNTL];   vap = rmesa->hw.vap.cmd[VAP_SE_VAP_CNTL];   /* HW perspective divide is a win, but tiny vertex formats are a    * bigger one.    */   if (!RENDERINPUTS_TEST_RANGE( tnl->render_inputs_bitset, _TNL_FIRST_TEX, _TNL_LAST_TEX )	|| (ctx->_TriangleCaps & (DD_TRI_LIGHT_TWOSIDE|DD_TRI_UNFILLED))) {      rmesa->swtcl.needproj = GL_TRUE;      vte |= R200_VTX_XY_FMT | R200_VTX_Z_FMT;      vte &= ~R200_VTX_W0_FMT;      if (RENDERINPUTS_TEST_RANGE( tnl->render_inputs_bitset, _TNL_FIRST_TEX, _TNL_LAST_TEX )) {	 vap &= ~R200_VAP_FORCE_W_TO_ONE;      }      else {	 vap |= R200_VAP_FORCE_W_TO_ONE;      }   }   else {      rmesa->swtcl.needproj = GL_FALSE;      vte &= ~(R200_VTX_XY_FMT | R200_VTX_Z_FMT);      vte |= R200_VTX_W0_FMT;      vap &= ~R200_VAP_FORCE_W_TO_ONE;   }   _tnl_need_projected_coords( ctx, rmesa->swtcl.needproj );   if (vte != rmesa->hw.vte.cmd[VTE_SE_VTE_CNTL]) {      R200_STATECHANGE( rmesa, vte );      rmesa->hw.vte.cmd[VTE_SE_VTE_CNTL] = vte;   }   if (vap != rmesa->hw.vap.cmd[VAP_SE_VAP_CNTL]) {      R200_STATECHANGE( rmesa, vap );      rmesa->hw.vap.cmd[VAP_SE_VAP_CNTL] = vap;   }}/* Flush vertices in the current dma region. */static void flush_last_swtcl_prim( r200ContextPtr rmesa  ){   if (R200_DEBUG & DEBUG_IOCTL)      fprintf(stderr, "%s\n", __FUNCTION__);   rmesa->dma.flush = NULL;   if (rmesa->dma.current.buf) {      struct r200_dma_region *current = &rmesa->dma.current;      GLuint current_offset = (rmesa->r200Screen->gart_buffer_offset +			       current->buf->buf->idx * RADEON_BUFFER_SIZE + 			       current->start);      assert (!(rmesa->swtcl.hw_primitive & R200_VF_PRIM_WALK_IND));      assert (current->start + 	      rmesa->swtcl.numverts * rmesa->swtcl.vertex_size * 4 ==	      current->ptr);      if (rmesa->dma.current.start != rmesa->dma.current.ptr) {	 r200EnsureCmdBufSpace( rmesa, VERT_AOS_BUFSZ +			        rmesa->hw.max_state_size + VBUF_BUFSZ );	 r200EmitVertexAOS( rmesa,			      rmesa->swtcl.vertex_size,			      current_offset);	 r200EmitVbufPrim( rmesa,			   rmesa->swtcl.hw_primitive,			   rmesa->swtcl.numverts);      }      rmesa->swtcl.numverts = 0;      current->start = current->ptr;   }}/* Alloc space in the current dma region. */static INLINE void *r200AllocDmaLowVerts( r200ContextPtr rmesa, int nverts, int vsize ){   GLuint bytes = vsize * nverts;   if ( rmesa->dma.current.ptr + bytes > rmesa->dma.current.end )       r200RefillCurrentDmaRegion( rmesa );   if (!rmesa->dma.flush) {      rmesa->glCtx->Driver.NeedFlush |= FLUSH_STORED_VERTICES;      rmesa->dma.flush = flush_last_swtcl_prim;   }   ASSERT( vsize == rmesa->swtcl.vertex_size * 4 );   ASSERT( rmesa->dma.flush == flush_last_swtcl_prim );   ASSERT( rmesa->dma.current.start + 	   rmesa->swtcl.numverts * rmesa->swtcl.vertex_size * 4 ==	   rmesa->dma.current.ptr );   {      GLubyte *head = (GLubyte *) (rmesa->dma.current.address + rmesa->dma.current.ptr);      rmesa->dma.current.ptr += bytes;      rmesa->swtcl.numverts += nverts;      return head;   }}/**************************************************************************/static INLINE GLuint reduced_hw_prim( GLcontext *ctx, GLuint prim){   switch (prim) {   case GL_POINTS:      return (ctx->Point.PointSprite ||	 ((ctx->_TriangleCaps & (DD_POINT_SIZE | DD_POINT_ATTEN)) &&	 !(ctx->_TriangleCaps & (DD_POINT_SMOOTH)))) ?	 R200_VF_PRIM_POINT_SPRITES : R200_VF_PRIM_POINTS;   case GL_LINES:   /* fallthrough */   case GL_LINE_LOOP:   /* fallthrough */   case GL_LINE_STRIP:      return R200_VF_PRIM_LINES;   default:   /* all others reduced to triangles */      return R200_VF_PRIM_TRIANGLES;   }}static void r200RasterPrimitive( GLcontext *ctx, GLuint hwprim );static void r200RenderPrimitive( GLcontext *ctx, GLenum prim );static void r200ResetLineStipple( GLcontext *ctx );/*********************************************************************** *                    Emit primitives as inline vertices               * ***********************************************************************/#define HAVE_POINTS      1#define HAVE_LINES       1#define HAVE_LINE_STRIPS 1#define HAVE_TRIANGLES   1#define HAVE_TRI_STRIPS  1#define HAVE_TRI_STRIP_1 0#define HAVE_TRI_FANS    1#define HAVE_QUADS       0#define HAVE_QUAD_STRIPS 0#define HAVE_POLYGONS    1#define HAVE_ELTS        0#undef LOCAL_VARS#undef ALLOC_VERTS#define CTX_ARG r200ContextPtr rmesa#define GET_VERTEX_DWORDS() rmesa->swtcl.vertex_size#define ALLOC_VERTS( n, size ) r200AllocDmaLowVerts( rmesa, n, size * 4 )#define LOCAL_VARS						\   r200ContextPtr rmesa = R200_CONTEXT(ctx);		\   const char *r200verts = (char *)rmesa->swtcl.verts;#define VERT(x) (r200Vertex *)(r200verts + ((x) * vertsize * sizeof(int)))#define VERTEX r200Vertex #define DO_DEBUG_VERTS (1 && (R200_DEBUG & DEBUG_VERTS))#undef TAG#define TAG(x) r200_##x#include "tnl_dd/t_dd_triemit.h"/*********************************************************************** *          Macros for t_dd_tritmp.h to draw basic primitives          * ***********************************************************************/#define QUAD( a, b, c, d ) r200_quad( rmesa, a, b, c, d )#define TRI( a, b, c )     r200_triangle( rmesa, a, b, c )#define LINE( a, b )       r200_line( rmesa, a, b )#define POINT( a )         r200_point( rmesa, a )/*********************************************************************** *              Build render functions from dd templates               * ***********************************************************************/#define R200_TWOSIDE_BIT	0x01#define R200_UNFILLED_BIT	0x02#define R200_MAX_TRIFUNC	0x04static struct {   tnl_points_func	        points;   tnl_line_func		line;   tnl_triangle_func	triangle;   tnl_quad_func		quad;} rast_tab[R200_MAX_TRIFUNC];#define DO_FALLBACK  0#define DO_UNFILLED (IND & R200_UNFILLED_BIT)#define DO_TWOSIDE  (IND & R200_TWOSIDE_BIT)#define DO_FLAT      0#define DO_OFFSET     0#define DO_TRI       1#define DO_QUAD      1#define DO_LINE      1#define DO_POINTS    1#define DO_FULL_QUAD 1#define HAVE_RGBA   1#define HAVE_SPEC   1#define HAVE_BACK_COLORS  0#define HAVE_HW_FLATSHADE 1#define TAB rast_tab#define DEPTH_SCALE 1.0#define UNFILLED_TRI unfilled_tri#define UNFILLED_QUAD unfilled_quad#define VERT_X(_v) _v->v.x#define VERT_Y(_v) _v->v.y#define VERT_Z(_v) _v->v.z#define AREA_IS_CCW( a ) (a < 0)#define GET_VERTEX(e) (rmesa->swtcl.verts + (e*rmesa->swtcl.vertex_size*sizeof(int)))#define VERT_SET_RGBA( v, c )  					\do {								\   r200_color_t *color = (r200_color_t *)&((v)->ui[coloroffset]);	\   UNCLAMPED_FLOAT_TO_UBYTE(color->red, (c)[0]);		\   UNCLAMPED_FLOAT_TO_UBYTE(color->green, (c)[1]);		\   UNCLAMPED_FLOAT_TO_UBYTE(color->blue, (c)[2]);		\   UNCLAMPED_FLOAT_TO_UBYTE(color->alpha, (c)[3]);		\} while (0)#define VERT_COPY_RGBA( v0, v1 ) v0->ui[coloroffset] = v1->ui[coloroffset]#define VERT_SET_SPEC( v, c )					\do {								\   if (specoffset) {						\      r200_color_t *spec = (r200_color_t *)&((v)->ui[specoffset]);	\      UNCLAMPED_FLOAT_TO_UBYTE(spec->red, (c)[0]);	\      UNCLAMPED_FLOAT_TO_UBYTE(spec->green, (c)[1]);	\      UNCLAMPED_FLOAT_TO_UBYTE(spec->blue, (c)[2]);	\   }								\} while (0)#define VERT_COPY_SPEC( v0, v1 )			\do {							\   if (specoffset) {					\      r200_color_t *spec0 = (r200_color_t *)&((v0)->ui[specoffset]);	\      r200_color_t *spec1 = (r200_color_t *)&((v1)->ui[specoffset]);	\      spec0->red   = spec1->red;	\      spec0->green = spec1->green;	\      spec0->blue  = spec1->blue; 	\   }							\} while (0)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -