📄 r200_texstate.c
字号:
/*Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.The Weather Channel (TM) funded Tungsten Graphics to develop theinitial release of the Radeon 8500 driver under the XFree86 license.This notice must be preserved.Permission is hereby granted, free of charge, to any person obtaininga copy of this software and associated documentation files (the"Software"), to deal in the Software without restriction, includingwithout limitation the rights to use, copy, modify, merge, publish,distribute, sublicense, and/or sell copies of the Software, and topermit persons to whom the Software is furnished to do so, subject tothe following conditions:The above copyright notice and this permission notice (including thenext paragraph) shall be included in all copies or substantialportions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OFMERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BELIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTIONOF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTIONWITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.**************************************************************************//* * Authors: * Keith Whitwell <keith@tungstengraphics.com> */#include "glheader.h"#include "imports.h"#include "context.h"#include "macros.h"#include "texformat.h"#include "texobj.h"#include "enums.h"#include "r200_context.h"#include "r200_state.h"#include "r200_ioctl.h"#include "r200_swtcl.h"#include "r200_tex.h"#include "r200_tcl.h"#define R200_TXFORMAT_A8 R200_TXFORMAT_I8#define R200_TXFORMAT_L8 R200_TXFORMAT_I8#define R200_TXFORMAT_AL88 R200_TXFORMAT_AI88#define R200_TXFORMAT_YCBCR R200_TXFORMAT_YVYU422#define R200_TXFORMAT_YCBCR_REV R200_TXFORMAT_VYUY422#define R200_TXFORMAT_RGB_DXT1 R200_TXFORMAT_DXT1#define R200_TXFORMAT_RGBA_DXT1 R200_TXFORMAT_DXT1#define R200_TXFORMAT_RGBA_DXT3 R200_TXFORMAT_DXT23#define R200_TXFORMAT_RGBA_DXT5 R200_TXFORMAT_DXT45#define _COLOR(f) \ [ MESA_FORMAT_ ## f ] = { R200_TXFORMAT_ ## f, 0 }#define _COLOR_REV(f) \ [ MESA_FORMAT_ ## f ## _REV ] = { R200_TXFORMAT_ ## f, 0 }#define _ALPHA(f) \ [ MESA_FORMAT_ ## f ] = { R200_TXFORMAT_ ## f | R200_TXFORMAT_ALPHA_IN_MAP, 0 }#define _ALPHA_REV(f) \ [ MESA_FORMAT_ ## f ## _REV ] = { R200_TXFORMAT_ ## f | R200_TXFORMAT_ALPHA_IN_MAP, 0 }#define _YUV(f) \ [ MESA_FORMAT_ ## f ] = { R200_TXFORMAT_ ## f, R200_YUV_TO_RGB }#define _INVALID(f) \ [ MESA_FORMAT_ ## f ] = { 0xffffffff, 0 }#define VALID_FORMAT(f) ( ((f) <= MESA_FORMAT_RGBA_DXT5) \ && (tx_table_be[f].format != 0xffffffff) )struct tx_table { GLuint format, filter;};static const struct tx_table tx_table_be[] ={ [ MESA_FORMAT_RGBA8888 ] = { R200_TXFORMAT_ABGR8888 | R200_TXFORMAT_ALPHA_IN_MAP, 0 }, _ALPHA_REV(RGBA8888), _ALPHA(ARGB8888), _ALPHA_REV(ARGB8888), _INVALID(RGB888), _COLOR(RGB565), _COLOR_REV(RGB565), _ALPHA(ARGB4444), _ALPHA_REV(ARGB4444), _ALPHA(ARGB1555), _ALPHA_REV(ARGB1555), _ALPHA(AL88), _ALPHA_REV(AL88), _ALPHA(A8), _COLOR(L8), _ALPHA(I8), _INVALID(CI8), _YUV(YCBCR), _YUV(YCBCR_REV), _INVALID(RGB_FXT1), _INVALID(RGBA_FXT1), _COLOR(RGB_DXT1), _ALPHA(RGBA_DXT1), _ALPHA(RGBA_DXT3), _ALPHA(RGBA_DXT5),};static const struct tx_table tx_table_le[] ={ _ALPHA(RGBA8888), [ MESA_FORMAT_RGBA8888_REV ] = { R200_TXFORMAT_ABGR8888 | R200_TXFORMAT_ALPHA_IN_MAP, 0 }, _ALPHA(ARGB8888), _ALPHA_REV(ARGB8888), [ MESA_FORMAT_RGB888 ] = { R200_TXFORMAT_ARGB8888, 0 }, _COLOR(RGB565), _COLOR_REV(RGB565), _ALPHA(ARGB4444), _ALPHA_REV(ARGB4444), _ALPHA(ARGB1555), _ALPHA_REV(ARGB1555), _ALPHA(AL88), _ALPHA_REV(AL88), _ALPHA(A8), _COLOR(L8), _ALPHA(I8), _INVALID(CI8), _YUV(YCBCR), _YUV(YCBCR_REV), _INVALID(RGB_FXT1), _INVALID(RGBA_FXT1), _COLOR(RGB_DXT1), _ALPHA(RGBA_DXT1), _ALPHA(RGBA_DXT3), _ALPHA(RGBA_DXT5),};#undef _COLOR#undef _ALPHA#undef _INVALID/** * This function computes the number of bytes of storage needed for * the given texture object (all mipmap levels, all cube faces). * The \c image[face][level].x/y/width/height parameters for upload/blitting * are computed here. \c pp_txfilter, \c pp_txformat, etc. will be set here * too. * * \param rmesa Context pointer * \param tObj GL texture object whose images are to be posted to * hardware state. */static void r200SetTexImages( r200ContextPtr rmesa, struct gl_texture_object *tObj ){ r200TexObjPtr t = (r200TexObjPtr)tObj->DriverData; const struct gl_texture_image *baseImage = tObj->Image[0][tObj->BaseLevel]; GLint curOffset, blitWidth; GLint i, texelBytes; GLint numLevels; GLint log2Width, log2Height, log2Depth; /* Set the hardware texture format */ if ( !t->image_override ) { if ( VALID_FORMAT( baseImage->TexFormat->MesaFormat ) ) { const struct tx_table *table = _mesa_little_endian() ? tx_table_le : tx_table_be; t->pp_txformat &= ~(R200_TXFORMAT_FORMAT_MASK | R200_TXFORMAT_ALPHA_IN_MAP); t->pp_txfilter &= ~R200_YUV_TO_RGB; t->pp_txformat |= table[ baseImage->TexFormat->MesaFormat ].format; t->pp_txfilter |= table[ baseImage->TexFormat->MesaFormat ].filter; } else { _mesa_problem(NULL, "unexpected texture format in %s", __FUNCTION__); return; } } texelBytes = baseImage->TexFormat->TexelBytes; /* Compute which mipmap levels we really want to send to the hardware. */ driCalculateTextureFirstLastLevel( (driTextureObject *) t ); log2Width = tObj->Image[0][t->base.firstLevel]->WidthLog2; log2Height = tObj->Image[0][t->base.firstLevel]->HeightLog2; log2Depth = tObj->Image[0][t->base.firstLevel]->DepthLog2; numLevels = t->base.lastLevel - t->base.firstLevel + 1; assert(numLevels <= RADEON_MAX_TEXTURE_LEVELS); /* Calculate mipmap offsets and dimensions for blitting (uploading) * The idea is that we lay out the mipmap levels within a block of * memory organized as a rectangle of width BLIT_WIDTH_BYTES. */ curOffset = 0; blitWidth = BLIT_WIDTH_BYTES; t->tile_bits = 0; /* figure out if this texture is suitable for tiling. */ if (texelBytes) { if (rmesa->texmicrotile && (tObj->Target != GL_TEXTURE_RECTANGLE_NV) && /* texrect might be able to use micro tiling too in theory? */ (baseImage->Height > 1)) { /* allow 32 (bytes) x 1 mip (which will use two times the space the non-tiled version would use) max if base texture is large enough */ if ((numLevels == 1) || (((baseImage->Width * texelBytes / baseImage->Height) <= 32) && (baseImage->Width * texelBytes > 64)) || ((baseImage->Width * texelBytes / baseImage->Height) <= 16)) { t->tile_bits |= R200_TXO_MICRO_TILE; } } if (tObj->Target != GL_TEXTURE_RECTANGLE_NV) { /* we can set macro tiling even for small textures, they will be untiled anyway */ t->tile_bits |= R200_TXO_MACRO_TILE; } } for (i = 0; i < numLevels; i++) { const struct gl_texture_image *texImage; GLuint size; texImage = tObj->Image[0][i + t->base.firstLevel]; if ( !texImage ) break; /* find image size in bytes */ if (texImage->IsCompressed) { /* need to calculate the size AFTER padding even though the texture is submitted without padding. Only handle pot textures currently - don't know if npot is even possible, size calculation would certainly need (trivial) adjustments. Align (and later pad) to 32byte, not sure what that 64byte blit width is good for? */ if ((t->pp_txformat & R200_TXFORMAT_FORMAT_MASK) == R200_TXFORMAT_DXT1) { /* RGB_DXT1/RGBA_DXT1, 8 bytes per block */ if ((texImage->Width + 3) < 8) /* width one block */ size = texImage->CompressedSize * 4; else if ((texImage->Width + 3) < 16) size = texImage->CompressedSize * 2; else size = texImage->CompressedSize; } else /* DXT3/5, 16 bytes per block */ if ((texImage->Width + 3) < 8) size = texImage->CompressedSize * 2; else size = texImage->CompressedSize; } else if (tObj->Target == GL_TEXTURE_RECTANGLE_NV) { size = ((texImage->Width * texelBytes + 63) & ~63) * texImage->Height; } else if (t->tile_bits & R200_TXO_MICRO_TILE) { /* tile pattern is 16 bytes x2. mipmaps stay 32 byte aligned, though the actual offset may be different (if texture is less than 32 bytes width) to the untiled case */ int w = (texImage->Width * texelBytes * 2 + 31) & ~31; size = (w * ((texImage->Height + 1) / 2)) * texImage->Depth; blitWidth = MAX2(texImage->Width, 64 / texelBytes); } else { int w = (texImage->Width * texelBytes + 31) & ~31; size = w * texImage->Height * texImage->Depth; blitWidth = MAX2(texImage->Width, 64 / texelBytes); } assert(size > 0); /* Align to 32-byte offset. It is faster to do this unconditionally * (no branch penalty). */ curOffset = (curOffset + 0x1f) & ~0x1f; if (texelBytes) { t->image[0][i].x = curOffset; /* fix x and y coords up later together with offset */ t->image[0][i].y = 0; t->image[0][i].width = MIN2(size / texelBytes, blitWidth); t->image[0][i].height = (size / texelBytes) / t->image[0][i].width; } else { t->image[0][i].x = curOffset % BLIT_WIDTH_BYTES; t->image[0][i].y = curOffset / BLIT_WIDTH_BYTES; t->image[0][i].width = MIN2(size, BLIT_WIDTH_BYTES); t->image[0][i].height = size / t->image[0][i].width; }#if 0 /* for debugging only and only applicable to non-rectangle targets */ assert(size % t->image[0][i].width == 0); assert(t->image[0][i].x == 0 || (size < BLIT_WIDTH_BYTES && t->image[0][i].height == 1));#endif if (0) fprintf(stderr, "level %d: %dx%d x=%d y=%d w=%d h=%d size=%d at %d\n", i, texImage->Width, texImage->Height, t->image[0][i].x, t->image[0][i].y, t->image[0][i].width, t->image[0][i].height, size, curOffset); curOffset += size; } /* Align the total size of texture memory block. */ t->base.totalSize = (curOffset + RADEON_OFFSET_MASK) & ~RADEON_OFFSET_MASK; /* Setup remaining cube face blits, if needed */ if (tObj->Target == GL_TEXTURE_CUBE_MAP) { const GLuint faceSize = t->base.totalSize; GLuint face; /* reuse face 0 x/y/width/height - just update the offset when uploading */ for (face = 1; face < 6; face++) { for (i = 0; i < numLevels; i++) { t->image[face][i].x = t->image[0][i].x; t->image[face][i].y = t->image[0][i].y; t->image[face][i].width = t->image[0][i].width; t->image[face][i].height = t->image[0][i].height; } } t->base.totalSize = 6 * faceSize; /* total texmem needed */ } /* Hardware state: */ t->pp_txfilter &= ~R200_MAX_MIP_LEVEL_MASK; t->pp_txfilter |= (numLevels - 1) << R200_MAX_MIP_LEVEL_SHIFT; t->pp_txformat &= ~(R200_TXFORMAT_WIDTH_MASK | R200_TXFORMAT_HEIGHT_MASK | R200_TXFORMAT_CUBIC_MAP_ENABLE | R200_TXFORMAT_F5_WIDTH_MASK | R200_TXFORMAT_F5_HEIGHT_MASK); t->pp_txformat |= ((log2Width << R200_TXFORMAT_WIDTH_SHIFT) | (log2Height << R200_TXFORMAT_HEIGHT_SHIFT)); t->pp_txformat_x &= ~(R200_DEPTH_LOG2_MASK | R200_TEXCOORD_MASK); if (tObj->Target == GL_TEXTURE_3D) { t->pp_txformat_x |= (log2Depth << R200_DEPTH_LOG2_SHIFT); t->pp_txformat_x |= R200_TEXCOORD_VOLUME; } else if (tObj->Target == GL_TEXTURE_CUBE_MAP) { ASSERT(log2Width == log2Height); t->pp_txformat |= ((log2Width << R200_TXFORMAT_F5_WIDTH_SHIFT) | (log2Height << R200_TXFORMAT_F5_HEIGHT_SHIFT) |/* don't think we need this bit, if it exists at all - fglrx does not set it */ (R200_TXFORMAT_CUBIC_MAP_ENABLE)); t->pp_txformat_x |= R200_TEXCOORD_CUBIC_ENV; t->pp_cubic_faces = ((log2Width << R200_FACE_WIDTH_1_SHIFT) | (log2Height << R200_FACE_HEIGHT_1_SHIFT) | (log2Width << R200_FACE_WIDTH_2_SHIFT) | (log2Height << R200_FACE_HEIGHT_2_SHIFT) | (log2Width << R200_FACE_WIDTH_3_SHIFT) | (log2Height << R200_FACE_HEIGHT_3_SHIFT) | (log2Width << R200_FACE_WIDTH_4_SHIFT) | (log2Height << R200_FACE_HEIGHT_4_SHIFT)); } else { /* If we don't in fact send enough texture coordinates, q will be 1, * making TEXCOORD_PROJ act like TEXCOORD_NONPROJ (Right?) */ t->pp_txformat_x |= R200_TEXCOORD_PROJ; } t->pp_txsize = (((tObj->Image[0][t->base.firstLevel]->Width - 1) << 0) | ((tObj->Image[0][t->base.firstLevel]->Height - 1) << 16)); /* Only need to round to nearest 32 for textures, but the blitter * requires 64-byte aligned pitches, and we may/may not need the * blitter. NPOT only! */ if ( !t->image_override ) { if (baseImage->IsCompressed) t->pp_txpitch = (tObj->Image[0][t->base.firstLevel]->Width + 63) & ~(63); else t->pp_txpitch = ((tObj->Image[0][t->base.firstLevel]->Width * texelBytes) + 63) & ~(63); t->pp_txpitch -= 32; } t->dirty_state = TEX_ALL; /* FYI: r200UploadTexImages( rmesa, t ) used to be called here */}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -