⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_tritemp.h

📁 Mesa is an open-source implementation of the OpenGL specification - a system for rendering interacti
💻 H
📖 第 1 页 / 共 3 页
字号:
/* * Mesa 3-D graphics library * Version:  7.0 * * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *//* * Triangle Rasterizer Template * * This file is #include'd to generate custom triangle rasterizers. * * The following macros may be defined to indicate what auxillary information * must be interpolated across the triangle: *    INTERP_Z        - if defined, interpolate integer Z values *    INTERP_RGB      - if defined, interpolate integer RGB values *    INTERP_ALPHA    - if defined, interpolate integer Alpha values *    INTERP_INDEX    - if defined, interpolate color index values *    INTERP_INT_TEX  - if defined, interpolate integer ST texcoords *                         (fast, simple 2-D texture mapping, without *                         perspective correction) *    INTERP_ATTRIBS  - if defined, interpolate arbitrary attribs (texcoords, *                         varying vars, etc)  This also causes W to be *                         computed for perspective correction). * * When one can directly address pixels in the color buffer the following * macros can be defined and used to compute pixel addresses during * rasterization (see pRow): *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint) *    BYTES_PER_ROW       - number of bytes per row in the color buffer *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where *                          Y==0 at bottom of screen and increases upward. * * Similarly, for direct depth buffer access, this type is used for depth * buffer addressing (see zRow): *    DEPTH_TYPE          - either GLushort or GLuint * * Optionally, one may provide one-time setup code per triangle: *    SETUP_CODE    - code which is to be executed once per triangle * * The following macro MUST be defined: *    RENDER_SPAN(span) - code to write a span of pixels. * * This code was designed for the origin to be in the lower-left corner. * * Inspired by triangle rasterizer code written by Allen Akin.  Thanks Allen! * * * Some notes on rasterization accuracy: * * This code uses fixed point arithmetic (the GLfixed type) to iterate * over the triangle edges and interpolate ancillary data (such as Z, * color, secondary color, etc).  The number of fractional bits in * GLfixed and the value of SUB_PIXEL_BITS has a direct bearing on the * accuracy of rasterization. * * If SUB_PIXEL_BITS=4 then we'll snap the vertices to the nearest * 1/16 of a pixel.  If we're walking up a long, nearly vertical edge * (dx=1/16, dy=1024) we'll need 4 + 10 = 14 fractional bits in * GLfixed to walk the edge without error.  If the maximum viewport * height is 4K pixels, then we'll need 4 + 12 = 16 fractional bits. * * Historically, Mesa has used 11 fractional bits in GLfixed, snaps * vertices to 1/16 pixel and allowed a maximum viewport height of 2K * pixels.  11 fractional bits is actually insufficient for accurately * rasterizing some triangles.  More recently, the maximum viewport * height was increased to 4K pixels.  Thus, Mesa should be using 16 * fractional bits in GLfixed.  Unfortunately, there may be some issues * with setting FIXED_FRAC_BITS=16, such as multiplication overflow. * This will have to be examined in some detail... * * For now, if you find rasterization errors, particularly with tall, * sliver triangles, try increasing FIXED_FRAC_BITS and/or decreasing * SUB_PIXEL_BITS. *//* * Some code we unfortunately need to prevent negative interpolated colors. */#ifndef CLAMP_INTERPOLANT#define CLAMP_INTERPOLANT(CHANNEL, CHANNELSTEP, LEN)		\do {								\   GLfixed endVal = span.CHANNEL + (LEN) * span.CHANNELSTEP;	\   if (endVal < 0) {						\      span.CHANNEL -= endVal;					\   }								\   if (span.CHANNEL < 0) {					\      span.CHANNEL = 0;						\   }								\} while (0)#endifstatic void NAME(GLcontext *ctx, const SWvertex *v0,                                 const SWvertex *v1,                                 const SWvertex *v2 ){   typedef struct {      const SWvertex *v0, *v1;   /* Y(v0) < Y(v1) */      GLfloat dx;	/* X(v1) - X(v0) */      GLfloat dy;	/* Y(v1) - Y(v0) */      GLfloat dxdy;	/* dx/dy */      GLfixed fdxdy;	/* dx/dy in fixed-point */      GLfloat adjy;	/* adjust from v[0]->fy to fsy, scaled */      GLfixed fsx;	/* first sample point x coord */      GLfixed fsy;      GLfixed fx0;	/* fixed pt X of lower endpoint */      GLint lines;	/* number of lines to be sampled on this edge */   } EdgeT;   const SWcontext *swrast = SWRAST_CONTEXT(ctx);#ifdef INTERP_Z   const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;   const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;   const GLfloat maxDepth = ctx->DrawBuffer->_DepthMaxF;#define FixedToDepth(F)  ((F) >> fixedToDepthShift)#endif   EdgeT eMaj, eTop, eBot;   GLfloat oneOverArea;   const SWvertex *vMin, *vMid, *vMax;  /* Y(vMin)<=Y(vMid)<=Y(vMax) */   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;   const GLint snapMask = ~((FIXED_ONE / (1 << SUB_PIXEL_BITS)) - 1); /* for x/y coord snapping */   GLfixed vMin_fx, vMin_fy, vMid_fx, vMid_fy, vMax_fx, vMax_fy;   SWspan span;   (void) swrast;   INIT_SPAN(span, GL_POLYGON);   span.y = 0; /* silence warnings */#ifdef INTERP_Z   (void) fixedToDepthShift;#endif   /*   printf("%s()\n", __FUNCTION__);   printf("  %g, %g, %g\n",          v0->attrib[FRAG_ATTRIB_WPOS][0],          v0->attrib[FRAG_ATTRIB_WPOS][1],          v0->attrib[FRAG_ATTRIB_WPOS][2]);   printf("  %g, %g, %g\n",          v1->attrib[FRAG_ATTRIB_WPOS][0],          v1->attrib[FRAG_ATTRIB_WPOS][1],          v1->attrib[FRAG_ATTRIB_WPOS][2]);   printf("  %g, %g, %g\n",          v2->attrib[FRAG_ATTRIB_WPOS][0],          v2->attrib[FRAG_ATTRIB_WPOS][1],          v2->attrib[FRAG_ATTRIB_WPOS][2]);   */   /* Compute fixed point x,y coords w/ half-pixel offsets and snapping.    * And find the order of the 3 vertices along the Y axis.    */   {      const GLfixed fy0 = FloatToFixed(v0->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;      const GLfixed fy1 = FloatToFixed(v1->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;      const GLfixed fy2 = FloatToFixed(v2->attrib[FRAG_ATTRIB_WPOS][1] - 0.5F) & snapMask;      if (fy0 <= fy1) {         if (fy1 <= fy2) {            /* y0 <= y1 <= y2 */            vMin = v0;   vMid = v1;   vMax = v2;            vMin_fy = fy0;  vMid_fy = fy1;  vMax_fy = fy2;         }         else if (fy2 <= fy0) {            /* y2 <= y0 <= y1 */            vMin = v2;   vMid = v0;   vMax = v1;            vMin_fy = fy2;  vMid_fy = fy0;  vMax_fy = fy1;         }         else {            /* y0 <= y2 <= y1 */            vMin = v0;   vMid = v2;   vMax = v1;            vMin_fy = fy0;  vMid_fy = fy2;  vMax_fy = fy1;            bf = -bf;         }      }      else {         if (fy0 <= fy2) {            /* y1 <= y0 <= y2 */            vMin = v1;   vMid = v0;   vMax = v2;            vMin_fy = fy1;  vMid_fy = fy0;  vMax_fy = fy2;            bf = -bf;         }         else if (fy2 <= fy1) {            /* y2 <= y1 <= y0 */            vMin = v2;   vMid = v1;   vMax = v0;            vMin_fy = fy2;  vMid_fy = fy1;  vMax_fy = fy0;            bf = -bf;         }         else {            /* y1 <= y2 <= y0 */            vMin = v1;   vMid = v2;   vMax = v0;            vMin_fy = fy1;  vMid_fy = fy2;  vMax_fy = fy0;         }      }      /* fixed point X coords */      vMin_fx = FloatToFixed(vMin->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;      vMid_fx = FloatToFixed(vMid->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;      vMax_fx = FloatToFixed(vMax->attrib[FRAG_ATTRIB_WPOS][0] + 0.5F) & snapMask;   }   /* vertex/edge relationship */   eMaj.v0 = vMin;   eMaj.v1 = vMax;   /*TODO: .v1's not needed */   eTop.v0 = vMid;   eTop.v1 = vMax;   eBot.v0 = vMin;   eBot.v1 = vMid;   /* compute deltas for each edge:  vertex[upper] - vertex[lower] */   eMaj.dx = FixedToFloat(vMax_fx - vMin_fx);   eMaj.dy = FixedToFloat(vMax_fy - vMin_fy);   eTop.dx = FixedToFloat(vMax_fx - vMid_fx);   eTop.dy = FixedToFloat(vMax_fy - vMid_fy);   eBot.dx = FixedToFloat(vMid_fx - vMin_fx);   eBot.dy = FixedToFloat(vMid_fy - vMin_fy);   /* compute area, oneOverArea and perform backface culling */   {      const GLfloat area = eMaj.dx * eBot.dy - eBot.dx * eMaj.dy;      if (IS_INF_OR_NAN(area) || area == 0.0F)         return;      if (area * bf * swrast->_BackfaceCullSign < 0.0)         return;      oneOverArea = 1.0F / area;      /* 0 = front, 1 = back */      span.facing = oneOverArea * bf > 0.0F;   }   /* Edge setup.  For a triangle strip these could be reused... */   {      eMaj.fsy = FixedCeil(vMin_fy);      eMaj.lines = FixedToInt(FixedCeil(vMax_fy - eMaj.fsy));      if (eMaj.lines > 0) {         eMaj.dxdy = eMaj.dx / eMaj.dy;         eMaj.fdxdy = SignedFloatToFixed(eMaj.dxdy);         eMaj.adjy = (GLfloat) (eMaj.fsy - vMin_fy);  /* SCALED! */         eMaj.fx0 = vMin_fx;         eMaj.fsx = eMaj.fx0 + (GLfixed) (eMaj.adjy * eMaj.dxdy);      }      else {         return;  /*CULLED*/      }      eTop.fsy = FixedCeil(vMid_fy);      eTop.lines = FixedToInt(FixedCeil(vMax_fy - eTop.fsy));      if (eTop.lines > 0) {         eTop.dxdy = eTop.dx / eTop.dy;         eTop.fdxdy = SignedFloatToFixed(eTop.dxdy);         eTop.adjy = (GLfloat) (eTop.fsy - vMid_fy); /* SCALED! */         eTop.fx0 = vMid_fx;         eTop.fsx = eTop.fx0 + (GLfixed) (eTop.adjy * eTop.dxdy);      }      eBot.fsy = FixedCeil(vMin_fy);      eBot.lines = FixedToInt(FixedCeil(vMid_fy - eBot.fsy));      if (eBot.lines > 0) {         eBot.dxdy = eBot.dx / eBot.dy;         eBot.fdxdy = SignedFloatToFixed(eBot.dxdy);         eBot.adjy = (GLfloat) (eBot.fsy - vMin_fy);  /* SCALED! */         eBot.fx0 = vMin_fx;         eBot.fsx = eBot.fx0 + (GLfixed) (eBot.adjy * eBot.dxdy);      }   }   /*    * Conceptually, we view a triangle as two subtriangles    * separated by a perfectly horizontal line.  The edge that is    * intersected by this line is one with maximal absolute dy; we    * call it a ``major'' edge.  The other two edges are the    * ``top'' edge (for the upper subtriangle) and the ``bottom''    * edge (for the lower subtriangle).  If either of these two    * edges is horizontal or very close to horizontal, the    * corresponding subtriangle might cover zero sample points;    * we take care to handle such cases, for performance as well    * as correctness.    *    * By stepping rasterization parameters along the major edge,    * we can avoid recomputing them at the discontinuity where    * the top and bottom edges meet.  However, this forces us to    * be able to scan both left-to-right and right-to-left.    * Also, we must determine whether the major edge is at the    * left or right side of the triangle.  We do this by    * computing the magnitude of the cross-product of the major    * and top edges.  Since this magnitude depends on the sine of    * the angle between the two edges, its sign tells us whether    * we turn to the left or to the right when travelling along    * the major edge to the top edge, and from this we infer    * whether the major edge is on the left or the right.    *    * Serendipitously, this cross-product magnitude is also a    * value we need to compute the iteration parameter    * derivatives for the triangle, and it can be used to perform    * backface culling because its sign tells us whether the    * triangle is clockwise or counterclockwise.  In this code we    * refer to it as ``area'' because it's also proportional to    * the pixel area of the triangle.    */   {      GLint scan_from_left_to_right;  /* true if scanning left-to-right */#ifdef INTERP_INDEX      GLfloat didx, didy;#endif      /*       * Execute user-supplied setup code

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -