⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 s_aatriangle.c

📁 Mesa is an open-source implementation of the OpenGL specification - a system for rendering interacti
💻 C
字号:
/* * Mesa 3-D graphics library * Version:  6.5.3 * * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *//* * Antialiased Triangle rasterizers */#include "glheader.h"#include "context.h"#include "colormac.h"#include "context.h"#include "macros.h"#include "imports.h"#include "s_aatriangle.h"#include "s_context.h"#include "s_span.h"/* * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2 * vertices and the given Z values. * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0. */static INLINE voidcompute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],              GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4]){   const GLfloat px = v1[0] - v0[0];   const GLfloat py = v1[1] - v0[1];   const GLfloat pz = z1 - z0;   const GLfloat qx = v2[0] - v0[0];   const GLfloat qy = v2[1] - v0[1];   const GLfloat qz = z2 - z0;   /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */   const GLfloat a = py * qz - pz * qy;   const GLfloat b = pz * qx - px * qz;   const GLfloat c = px * qy - py * qx;   /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending      on the distance of plane from origin and arbitrary "w" parallel      to the plane. */   /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",      which is equal to "-d" below. */   const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);   plane[0] = a;   plane[1] = b;   plane[2] = c;   plane[3] = d;}/* * Compute coefficients of a plane with a constant Z value. */static INLINE voidconstant_plane(GLfloat value, GLfloat plane[4]){   plane[0] = 0.0;   plane[1] = 0.0;   plane[2] = -1.0;   plane[3] = value;}#define CONSTANT_PLANE(VALUE, PLANE)	\do {					\   PLANE[0] = 0.0F;			\   PLANE[1] = 0.0F;			\   PLANE[2] = -1.0F;			\   PLANE[3] = VALUE;			\} while (0)/* * Solve plane equation for Z at (X,Y). */static INLINE GLfloatsolve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]){   ASSERT(plane[2] != 0.0F);   return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];}#define SOLVE_PLANE(X, Y, PLANE) \   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])/* * Return 1 / solve_plane(). */static INLINE GLfloatsolve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]){   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;   if (denom == 0.0F)      return 0.0F;   else      return -plane[2] / denom;}/* * Solve plane and return clamped GLchan value. */static INLINE GLchansolve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]){   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];#if CHAN_TYPE == GL_FLOAT   return CLAMP(z, 0.0F, CHAN_MAXF);#else   if (z < 0)      return 0;   else if (z > CHAN_MAX)      return CHAN_MAX;   return (GLchan) IROUND_POS(z);#endif}static INLINE GLfloatplane_dx(const GLfloat plane[4]){   return -plane[0] / plane[2];}static INLINE GLfloatplane_dy(const GLfloat plane[4]){   return -plane[1] / plane[2];}/* * Compute how much (area) of the given pixel is inside the triangle. * Vertices MUST be specified in counter-clockwise order. * Return:  coverage in [0, 1]. */static GLfloatcompute_coveragef(const GLfloat v0[3], const GLfloat v1[3],                  const GLfloat v2[3], GLint winx, GLint winy){   /* Given a position [0,3]x[0,3] return the sub-pixel sample position.    * Contributed by Ray Tice.    *    * Jitter sample positions -    * - average should be .5 in x & y for each column    * - each of the 16 rows and columns should be used once    * - the rectangle formed by the first four points    *   should contain the other points    * - the distrubition should be fairly even in any given direction    *    * The pattern drawn below isn't optimal, but it's better than a regular    * grid.  In the drawing, the center of each subpixel is surrounded by    * four dots.  The "x" marks the jittered position relative to the    * subpixel center.    */#define POS(a, b) (0.5+a*4+b)/16   static const GLfloat samples[16][2] = {      /* start with the four corners */      { POS(0, 2), POS(0, 0) },      { POS(3, 3), POS(0, 2) },      { POS(0, 0), POS(3, 1) },      { POS(3, 1), POS(3, 3) },      /* continue with interior samples */      { POS(1, 1), POS(0, 1) },      { POS(2, 0), POS(0, 3) },      { POS(0, 3), POS(1, 3) },      { POS(1, 2), POS(1, 0) },      { POS(2, 3), POS(1, 2) },      { POS(3, 2), POS(1, 1) },      { POS(0, 1), POS(2, 2) },      { POS(1, 0), POS(2, 1) },      { POS(2, 1), POS(2, 3) },      { POS(3, 0), POS(2, 0) },      { POS(1, 3), POS(3, 0) },      { POS(2, 2), POS(3, 2) }   };   const GLfloat x = (GLfloat) winx;   const GLfloat y = (GLfloat) winy;   const GLfloat dx0 = v1[0] - v0[0];   const GLfloat dy0 = v1[1] - v0[1];   const GLfloat dx1 = v2[0] - v1[0];   const GLfloat dy1 = v2[1] - v1[1];   const GLfloat dx2 = v0[0] - v2[0];   const GLfloat dy2 = v0[1] - v2[1];   GLint stop = 4, i;   GLfloat insideCount = 16.0F;#ifdef DEBUG   {      const GLfloat area = dx0 * dy1 - dx1 * dy0;      ASSERT(area >= 0.0);   }#endif   for (i = 0; i < stop; i++) {      const GLfloat sx = x + samples[i][0];      const GLfloat sy = y + samples[i][1];      /* cross product determines if sample is inside or outside each edge */      GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));      /* Check if the sample is exactly on an edge.  If so, let cross be a       * positive or negative value depending on the direction of the edge.       */      if (cross == 0.0F)         cross = dx0 + dy0;      if (cross < 0.0F) {         /* sample point is outside first edge */         insideCount -= 1.0F;         stop = 16;      }      else {         /* sample point is inside first edge */         cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));         if (cross == 0.0F)            cross = dx1 + dy1;         if (cross < 0.0F) {            /* sample point is outside second edge */            insideCount -= 1.0F;            stop = 16;         }         else {            /* sample point is inside first and second edges */            cross = (dx2 * (sy - v2[1]) -  dy2 * (sx - v2[0]));            if (cross == 0.0F)               cross = dx2 + dy2;            if (cross < 0.0F) {               /* sample point is outside third edge */               insideCount -= 1.0F;               stop = 16;            }         }      }   }   if (stop == 4)      return 1.0F;   else      return insideCount * (1.0F / 16.0F);}/* * Compute how much (area) of the given pixel is inside the triangle. * Vertices MUST be specified in counter-clockwise order. * Return:  coverage in [0, 15]. */static GLintcompute_coveragei(const GLfloat v0[3], const GLfloat v1[3],                  const GLfloat v2[3], GLint winx, GLint winy){   /* NOTE: 15 samples instead of 16. */   static const GLfloat samples[15][2] = {      /* start with the four corners */      { POS(0, 2), POS(0, 0) },      { POS(3, 3), POS(0, 2) },      { POS(0, 0), POS(3, 1) },      { POS(3, 1), POS(3, 3) },      /* continue with interior samples */      { POS(1, 1), POS(0, 1) },      { POS(2, 0), POS(0, 3) },      { POS(0, 3), POS(1, 3) },      { POS(1, 2), POS(1, 0) },      { POS(2, 3), POS(1, 2) },      { POS(3, 2), POS(1, 1) },      { POS(0, 1), POS(2, 2) },      { POS(1, 0), POS(2, 1) },      { POS(2, 1), POS(2, 3) },      { POS(3, 0), POS(2, 0) },      { POS(1, 3), POS(3, 0) }   };   const GLfloat x = (GLfloat) winx;   const GLfloat y = (GLfloat) winy;   const GLfloat dx0 = v1[0] - v0[0];   const GLfloat dy0 = v1[1] - v0[1];   const GLfloat dx1 = v2[0] - v1[0];   const GLfloat dy1 = v2[1] - v1[1];   const GLfloat dx2 = v0[0] - v2[0];   const GLfloat dy2 = v0[1] - v2[1];   GLint stop = 4, i;   GLint insideCount = 15;#ifdef DEBUG   {      const GLfloat area = dx0 * dy1 - dx1 * dy0;      ASSERT(area >= 0.0);   }#endif   for (i = 0; i < stop; i++) {      const GLfloat sx = x + samples[i][0];      const GLfloat sy = y + samples[i][1];      const GLfloat fx0 = sx - v0[0];      const GLfloat fy0 = sy - v0[1];      const GLfloat fx1 = sx - v1[0];      const GLfloat fy1 = sy - v1[1];      const GLfloat fx2 = sx - v2[0];      const GLfloat fy2 = sy - v2[1];      /* cross product determines if sample is inside or outside each edge */      GLfloat cross0 = (dx0 * fy0 - dy0 * fx0);      GLfloat cross1 = (dx1 * fy1 - dy1 * fx1);      GLfloat cross2 = (dx2 * fy2 - dy2 * fx2);      /* Check if the sample is exactly on an edge.  If so, let cross be a       * positive or negative value depending on the direction of the edge.       */      if (cross0 == 0.0F)         cross0 = dx0 + dy0;      if (cross1 == 0.0F)         cross1 = dx1 + dy1;      if (cross2 == 0.0F)         cross2 = dx2 + dy2;      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) {         /* point is outside triangle */         insideCount--;         stop = 15;      }   }   if (stop == 4)      return 15;   else      return insideCount;}static voidrgba_aa_tri(GLcontext *ctx,	    const SWvertex *v0,	    const SWvertex *v1,	    const SWvertex *v2){#define DO_Z#define DO_RGBA#include "s_aatritemp.h"}static voidindex_aa_tri(GLcontext *ctx,	     const SWvertex *v0,	     const SWvertex *v1,	     const SWvertex *v2){#define DO_Z#define DO_ATTRIBS#define DO_INDEX#include "s_aatritemp.h"}static voidgeneral_aa_tri(GLcontext *ctx,               const SWvertex *v0,               const SWvertex *v1,               const SWvertex *v2){#define DO_Z#define DO_RGBA#define DO_ATTRIBS#include "s_aatritemp.h"}/* * Examine GL state and set swrast->Triangle to an * appropriate antialiased triangle rasterizer function. */void_swrast_set_aa_triangle_function(GLcontext *ctx){   SWcontext *swrast = SWRAST_CONTEXT(ctx);   ASSERT(ctx->Polygon.SmoothFlag);   if (ctx->Texture._EnabledCoordUnits != 0       || ctx->FragmentProgram._Current       || swrast->_FogEnabled       || NEED_SECONDARY_COLOR(ctx)) {      SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;   }   else if (ctx->Visual.rgbMode) {      SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;   }   else {      SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri;   }   ASSERT(SWRAST_CONTEXT(ctx)->Triangle);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -