📄 initializer.cc
字号:
/** * Copyright (c) 2006 Michele Mastrogiovanni. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ ////////////////// NS Headers //////////////////#include "BackboneUtility.h"#include "Separator.h"#include "initializer.h"#include "random.h"#include "gridkeeper.h"#include <algorithm>#include <typeinfo>///////////////////////////////////// Parte di dichiarazione comune /////////////////////////////////////int hdr_initializer::offset_;int INITIALIZER_Agent::degree;int INITIALIZER_Agent::stojmenovic;int INITIALIZER_Agent::_DEBUG_;int INITIALIZER_Agent::limit;double INITIALIZER_Agent::max_delay;int INITIALIZER_Agent::max_timeout_hello;double INITIALIZER_Agent::jitter_timeout_hello;double INITIALIZER_Agent::timeout_hello;int INITIALIZER_Agent::max_timeout_first_decision;double INITIALIZER_Agent::jitter_timeout_first_decision;double INITIALIZER_Agent::timeout_first_decision;int INITIALIZER_Agent::max_timeout_last_decision;double INITIALIZER_Agent::jitter_timeout_last_decision;double INITIALIZER_Agent::timeout_last_decision;static class InitializerClass : public TclClass {public: InitializerClass() : TclClass("Agent/INITIALIZER") {} TclObject* create(int argc, const char*const* argv) { return(new INITIALIZER_Agent()); }} class_initializer;static class InitializerHeaderClass : public PacketHeaderClass {public: InitializerHeaderClass() : PacketHeaderClass("PacketHeader/INITIALIZER", sizeof(hdr_initializer)) { bind_offset(&hdr_initializer::offset_); }} class_initializerhdr;//// Verifica che il timeout sia di tipo HELLO.//boolInitializerTimer::isHelloTimeout(Event * e){ for (TimeoutMap::iterator i = hello_timeouts.begin(); i != hello_timeouts.end(); i++) { if (i->second.timeout == e) { i->second.num--; if (i->second.num <= 0) { agent->lastTimeout(INITIALIZER_STATUS_HELLO, i->first); } else { Scheduler::instance().schedule(this, e, INITIALIZER_Agent::timeout_hello + Random::uniform(INITIALIZER_Agent::jitter_timeout_hello)); agent->timeout(INITIALIZER_STATUS_HELLO, i->first); } return true; } } return false;}//// Verifica che il timeout sia di tipo FIRST DECISION.//boolInitializerTimer::isFirstDecisionTimeout(Event * e){ for (TimeoutMap::iterator i = first_decision_timeouts.begin(); i != first_decision_timeouts.end(); i++) { if (i->second.timeout == e) { i->second.num--; if (i->second.num <= 0) { agent->lastTimeout(INITIALIZER_STATUS_FIRST_DECISION, i->first); } else { Scheduler::instance().schedule(this, e, INITIALIZER_Agent::timeout_first_decision + Random::uniform(INITIALIZER_Agent::jitter_timeout_first_decision)); agent->timeout(INITIALIZER_STATUS_FIRST_DECISION, i->first); } return true; } } return false;}//// Verifica che il timeout sia di tipo LAST DECISION.//boolInitializerTimer::isLastDecisionTimeout(Event * e){ for (TimeoutMap::iterator i = last_decision_timeouts.begin(); i != last_decision_timeouts.end(); i++) { if (i->second.timeout == e) { i->second.num--; if (i->second.num <= 0) { agent->lastTimeout(INITIALIZER_STATUS_LAST_DECISION, i->first); } else { Scheduler::instance().schedule(this, e, INITIALIZER_Agent::timeout_last_decision + Random::uniform(INITIALIZER_Agent::jitter_timeout_last_decision)); agent->timeout(INITIALIZER_STATUS_LAST_DECISION, i->first); } return true; } } return false;}//// Gestisce l'arrivo di un timeout segnalandolo// opportunamente all'Agente.//voidInitializerTimer::handle(Event *e){ if (isHelloTimeout(e)) return; if (isFirstDecisionTimeout(e)) return; if (isLastDecisionTimeout(e)) return;}//// Inizializza i timeout che si possono lanciare in base ai vicini del nodo.// voidInitializerTimer::initTimeouts(NodeList & neighbors) { for (NodeList::iterator i = neighbors.begin(); i != neighbors.end(); i++) { // Definisce i Timeout di tipo HELLO struct Timeout h; h.timeout = new Event(); h.num = INITIALIZER_Agent::max_timeout_hello; hello_timeouts[*i] = h; // Definisce i Timeout di tipo FIRST DECISION struct Timeout f; f.timeout = new Event(); f.num = INITIALIZER_Agent::max_timeout_first_decision; first_decision_timeouts[*i] = f; // Definisce i Timeout di tipo LAST DECISION struct Timeout s; s.timeout = new Event(); s.num = INITIALIZER_Agent::max_timeout_last_decision; last_decision_timeouts[*i] = s; }}//// Fa partire i timeout per i nodi che non hanno ancora risposto al// messaggio di HELLO inviando la propria lista di vicini.// voidInitializerTimer::launchHelloTimeouts(){ for (TimeoutMap::iterator i = hello_timeouts.begin(); i != hello_timeouts.end(); i++) { Scheduler::instance().schedule(this, i->second.timeout, INITIALIZER_Agent::timeout_hello + Random::uniform(INITIALIZER_Agent::jitter_timeout_hello)); } }//// Fa partire i timeout per i nodi che non hanno ancora inviato// il proprio colore (iniziale).// void InitializerTimer::launchFirstDecisionTimeouts(){ for (TimeoutMap::iterator i = first_decision_timeouts.begin(); i != first_decision_timeouts.end(); i++) { Scheduler::instance().schedule(this, i->second.timeout, INITIALIZER_Agent::timeout_first_decision + Random::uniform(INITIALIZER_Agent::jitter_timeout_first_decision)); }}//// Fa partire i timeout per i nodi che non hanno ancora inviato// il proprio colore (finale).// void InitializerTimer::launchLastDecisionTimeouts(){ for (TimeoutMap::iterator i = last_decision_timeouts.begin(); i != last_decision_timeouts.end(); i++) { Scheduler::instance().schedule(this, i->second.timeout, INITIALIZER_Agent::timeout_last_decision + Random::uniform(INITIALIZER_Agent::jitter_timeout_last_decision)); }} //// L'agente segnala la ricezione di un messaggio di tipo HELLO:// il timeout viene eliminato.//void InitializerTimer::receivedHello(NodeAddress from){ TimeoutMap::iterator i; for (i = hello_timeouts.begin(); i != hello_timeouts.end(); i++) { if (i->first == from) { Scheduler::instance().cancel(i->second.timeout); break; } } if (i != hello_timeouts.end()) hello_timeouts.erase(i);}//// L'agente segnala la ricezione di un messaggio di tipo FIRST DECISION:// il timeout viene eliminato.//void InitializerTimer::receivedFirstDecision(NodeAddress from){ TimeoutMap::iterator i; for (i = first_decision_timeouts.begin(); i != first_decision_timeouts.end(); i++) { if (i->first == from) { Scheduler::instance().cancel(i->second.timeout); break; } } if (i != first_decision_timeouts.end()) first_decision_timeouts.erase(i);} //// L'agente segnala la ricezione di un messaggio di tipo LAST DECISION:// il timeout viene eliminato.//void InitializerTimer::receivedLastDecision(NodeAddress from){ TimeoutMap::iterator i; for (i = last_decision_timeouts.begin(); i != last_decision_timeouts.end(); i++) { if (i->first == from) { Scheduler::instance().cancel(i->second.timeout); break; } } if (i != last_decision_timeouts.end()) last_decision_timeouts.erase(i);}//// Costruttore//INITIALIZER_Agent::INITIALIZER_Agent() : ClusteringModule(PT_INITIALIZER){ timer = new InitializerTimer(this); bind_bool("debug", &_DEBUG_); bind_bool("degree", °ree); bind_bool("stojmenovic", &stojmenovic); bind("limit", &limit); bind("max-delay", &max_delay); bind("max-timeout-hello", &max_timeout_hello); bind("jitter-timeout-hello", &jitter_timeout_hello); bind("timeout-hello", &timeout_hello); bind("max-timeout-first-decision", &max_timeout_first_decision); bind("jitter-timeout-first-decision", &jitter_timeout_first_decision); bind("timeout-first-decision", &timeout_first_decision); bind("max-timeout-last-decision", &max_timeout_last_decision); bind("jitter-timeout-last-decision", &jitter_timeout_last_decision); bind("timeout-last-decision", &timeout_last_decision); }void INITIALIZER_Agent::receive(Packet *p, Handler *h) { struct hdr_initializer *initializerh = HDR_INITIALIZER(p); struct hdr_ip *iph = HDR_IP(p); // Mittente. NodeAddress sender_address = iph->saddr(); //dcah->my_status.node_ID; // Destinazione. NodeAddress destination_address = iph->daddr(); // dcah->destination_address; switch (initializerh->msg_type) { case INITIALIZER_NEIGHBORS : receive_NEIGHBORS(sender_address, *(initializerh->node_list)); break; case INITIALIZER_COLOR : receive_COLOR(sender_address, initializerh->status, initializerh->color); break; case INITIALIZER_REQUEST : receive_REQUEST(sender_address, initializerh->status); break; default: break; } }//// Richiede un messaggio che forse e'stato perduto.//voidINITIALIZER_Agent::send_REQUEST(InitializerStatus _status_, NodeAddress to) { if (_DEBUG_) printf("%d send REQUEST\n", myAddress); Packet* p = allocpkt(); struct hdr_initializer * initializerh = HDR_INITIALIZER(p); initializerh->msg_type = INITIALIZER_REQUEST; initializerh->status = _status_; sendDown(p, sizeof(InitializerMessageType) + sizeof(InitializerStatus), to, INITIALIZER_Agent::max_delay);}//// Messaggio usato per cumunicare la propria lista dei vicini ad un nodo vicino//voidINITIALIZER_Agent::send_NEIGHBORS(NodeAddress to) { if (_DEBUG_) printf("%d send NEIGHBORS\n", myAddress); Packet* p = allocpkt(); struct hdr_initializer * initializerh = HDR_INITIALIZER(p); initializerh->msg_type = INITIALIZER_NEIGHBORS; initializerh->node_list = & neighbors; sendDown(p, sizeof(InitializerMessageType) + sizeof(nsaddr_t) * neighbors.size(), to, INITIALIZER_Agent::max_delay);}//// Messaggio usato per comunicare il colore del nodo in una certa fase dell'algoritmo.//voidINITIALIZER_Agent::send_COLOR(InitializerStatus _status_, NodeAddress to, Color color) { if (_DEBUG_) printf("%d send COLOR\n", myAddress); // Attention: set status of Agent BEFORE send GATEWAY message Packet* p = allocpkt(); struct hdr_initializer * initializerh = HDR_INITIALIZER(p); initializerh->msg_type = INITIALIZER_COLOR; initializerh->status = _status_; initializerh->color = color; sendDown(p, sizeof(InitializerMessageType) + sizeof(InitializerStatus) + sizeof(Color), to, INITIALIZER_Agent::max_delay);}////////////////////// Interrogazioni ////////////////////////// Procedura per verificare se esistono due vicini del nodo // non collegati fra loro.//boolINITIALIZER_Agent::twoNeighborsAreUnlinked(){ NodeList tmp; // Il nodo A punta ad un vicino. for (NodeList::iterator A = neighbors.begin(); A != neighbors.end(); A++) { NodeList & nlA = nodeNeighbors[*A]; // Il nodo B punta all'altro vicino. for (NodeList::iterator B = A; B != neighbors.end(); B++) // Se i vicini sono diversi if (A != B) { tmp.clear(); tmp.insert(*B); // Se fra i vicini di A non c'e' B allora i due vicini sono scollegati. if (!includes(nlA.begin(), nlA.end(), tmp.begin(), tmp.end())) return true; } } // Tutti i vicini sono collegati fra loro return false;}//// Verifica se l'insieme dei vicini passato come parametro// costituisce un insieme connesso.// Viene effettuata una visita in profondit
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -