⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 statmoments.m

📁 冈萨雷斯的经典教材数字图像处理的matlab版源代码
💻 M
字号:
function [v, unv] = statmoments(p,  n)
%STATMOMENTS Computes statistical central moments of image histogram.
%   [W, UNV] = STATMOMENTS(P, N) computes up to the Nth statistical
%   central moment of a histogram whose components are in vector
%   P. The length of P must equal 256 or 65536. 
%
%   The program outputs a vector V with V(1) = mean, V(2) = variance,
%   V(3) = 3rd moment, . . . V(N) = Nth central moment. The random
%   variable values are normalized to the range [0, 1], so all
%   moments also are in this range. 
%       
%   The program also outputs a vector UNV containing the same moments
%   as V, but using un-normalized random variable values (e.g., 0 to
%   255 if length(P) = 2^8). For example, if length(P) = 256 and V(1)
%   = 0.5, then UNV(1) would have the value UNV(1) = 127.5 (half of
%   the [0 255] range). 

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
%   $Revision: 1.3 $  $Date: 2003/05/24 22:43:02 $

Lp = length(p);
if (Lp ~= 256) & (Lp ~= 65536)
   error('P must be a 256- or 65536-element vector.');
end
G = Lp - 1;

% Make sure the histogram has unit area, and convert it to a
% column vector.
p = p/sum(p); p = p(:);

% Form a vector of all the possible values of the
% random variable.
z = 0:G;

% Now normalize the z's to the range [0, 1].
z = z./G;

% The mean.
m = z*p;

% Center random variables about the mean.
z = z - m;

% Compute the central moments.
v = zeros(1, n);
v(1) = m;
for j = 2:n
   v(j) = (z.^j)*p;
end

if nargout > 1
   % Compute the uncentralized moments.
   unv = zeros(1, n);
   unv(1)=m.*G;
   for j = 2:n
      unv(j) = ((z*G).^j)*p;
   end
end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -