📄 waveback.m
字号:
function [varargout] = waveback(c, s, varargin)
%WAVEBACK Performs a multi-level two-dimensional inverse FWT.
% [VARARGOUT] = WAVEBACK(C, S, VARARGIN) computes a 2D N-level
% partial or complete wavelet reconstruction of decomposition
% structure [C, S].
%
% SYNTAX:
% Y = WAVEBACK(C, S, 'WNAME'); Output inverse FWT matrix Y
% Y = WAVEBACK(C, S, LR, HR); using lowpass and highpass
% reconstruction filters (LR and
% HR) or filters obtained by
% calling WAVEFILTER with 'WNAME'.
%
% [NC, NS] = WAVEBACK(C, S, 'WNAME', N); Output new wavelet
% [NC, NS] = WAVEBACK(C, S, LR, HR, N); decomposition structure
% [NC, NS] after N step
% reconstruction.
%
% See also WAVEFAST and WAVEFILTER.
% Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2003/10/13 01:29:36 $
% Check the input and output arguments for reasonableness.
error(nargchk(3, 5, nargin));
error(nargchk(1, 2, nargout));
if (ndims(c) ~= 2) | (size(c, 1) ~= 1)
error('C must be a row vector.');
end
if (ndims(s) ~= 2) | ~isreal(s) | ~isnumeric(s) | (size(s,2) ~= 2)
error('S must be a real, numeric two-column array.');
end
elements = prod(s, 2);
if (length(c) < elements(end)) | ...
~(elements(1) + 3 * sum(elements(2:end - 1)) >= elements(end))
error(['[C S] must be a standard wavelet ' ...
'decomposition structure.']);
end
% Maximum levels in [C, S].
nmax = size(s, 1) - 2;
% Get third input parameter and init check flags.
wname = varargin{1}; filterchk = 0; nchk = 0;
switch nargin
case 3
if ischar(wname)
[lp, hp] = wavefilter(wname, 'r'); n = nmax;
else
error('Undefined filter.');
end
if nargout ~= 1
error('Wrong number of output arguments.');
end
case 4
if ischar(wname)
[lp, hp] = wavefilter(wname, 'r');
n = varargin{2}; nchk = 1;
else
lp = varargin{1}; hp = varargin{2};
filterchk = 1; n = nmax;
if nargout ~= 1
error('Wrong number of output arguments.');
end
end
case 5
lp = varargin{1}; hp = varargin{2}; filterchk = 1;
n = varargin{3}; nchk = 1;
otherwise
error('Improper number of input arguments.');
end
fl = length(lp);
if filterchk % Check filters.
if (ndims(lp) ~= 2) | ~isreal(lp) | ~isnumeric(lp) ...
| (ndims(hp) ~= 2) | ~isreal(hp) | ~isnumeric(hp) ...
| (fl ~= length(hp)) | rem(fl, 2) ~= 0
error(['LP and HP must be even and equal length real, ' ...
'numeric filter vectors.']);
end
end
if nchk & (~isnumeric(n) | ~isreal(n)) % Check scale N.
error('N must be a real numeric.');
end
if (n > nmax) | (n < 1)
error('Invalid number (N) of reconstructions requested.');
end
if (n ~= nmax) & (nargout ~= 2)
error('Not enough output arguments.');
end
nc = c; ns = s; nnmax = nmax; % Init decomposition.
for i = 1:n
% Compute a new approximation.
a = symconvup(wavecopy('a', nc, ns), lp, lp, fl, ns(3, :)) + ...
symconvup(wavecopy('h', nc, ns, nnmax), ...
hp, lp, fl, ns(3, :)) + ...
symconvup(wavecopy('v', nc, ns, nnmax), ...
lp, hp, fl, ns(3, :)) + ...
symconvup(wavecopy('d', nc, ns, nnmax), ...
hp, hp, fl, ns(3, :));
% Update decomposition.
nc = nc(4 * prod(ns(1, :)) + 1:end); nc = [a(:)' nc];
ns = ns(3:end, :); ns = [ns(1, :); ns];
nnmax = size(ns, 1) - 2;
end
% For complete reconstructions, reformat output as 2-D.
if nargout == 1
a = nc; nc = repmat(0, ns(1, :)); nc(:) = a;
end
varargout{1} = nc;
if nargout == 2
varargout{2} = ns;
end
%-------------------------------------------------------------------%
function z = symconvup(x, f1, f2, fln, keep)
% Upsample rows and convolve columns with f1; upsample columns and
% convolve rows with f2; then extract center assuming symmetrical
% extension.
y = zeros([2 1] .* size(x)); y(1:2:end, :) = x;
y = conv2(y, f1');
z = zeros([1 2] .* size(y)); z(:, 1:2:end) = y;
z = conv2(z, f2);
z = z(fln - 1:fln + keep(1) - 2, fln - 1:fln + keep(2) - 2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -