⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rijndael-api-fst.c

📁 AES最新加密解密算法
💻 C
字号:
/** * rijndael-api-fst.c * * @version 2.9 (December 2000) * * Optimised ANSI C code for the Rijndael cipher (now AES) * * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> * @author Paulo Barreto <paulo.barreto@terra.com.br> * * This code is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Acknowledgements: * * We are deeply indebted to the following people for their bug reports, * fixes, and improvement suggestions to this implementation. Though we * tried to list all contributions, we apologise in advance for any * missing reference. * * Andrew Bales <Andrew.Bales@Honeywell.com> * Markus Friedl <markus.friedl@informatik.uni-erlangen.de> * John Skodon <skodonj@webquill.com> */#include <assert.h>#include <stdlib.h>#include <string.h>#include "rijndael-alg-fst.h"#include "rijndael-api-fst.h"int makeKey(keyInstance *key, BYTE direction, int keyLen, char *keyMaterial) {	int i;	char *keyMat;	u8 cipherKey[MAXKB];		if (key == NULL) {		return BAD_KEY_INSTANCE;	}	if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {		key->direction = direction;	} else {		return BAD_KEY_DIR;	}	if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {		key->keyLen = keyLen;	} else {		return BAD_KEY_MAT;	}	if (keyMaterial != NULL) {		strncpy(key->keyMaterial, keyMaterial, keyLen/4);	}	/* initialize key schedule: */	keyMat = key->keyMaterial; 	for (i = 0; i < key->keyLen/8; i++) {		int t, v;		t = *keyMat++;		if ((t >= '0') && (t <= '9')) v = (t - '0') << 4;		else if ((t >= 'a') && (t <= 'f')) v = (t - 'a' + 10) << 4;		else if ((t >= 'A') && (t <= 'F')) v = (t - 'A' + 10) << 4;		else return BAD_KEY_MAT;				t = *keyMat++;		if ((t >= '0') && (t <= '9')) v ^= (t - '0');		else if ((t >= 'a') && (t <= 'f')) v ^= (t - 'a' + 10);		else if ((t >= 'A') && (t <= 'F')) v ^= (t - 'A' + 10);		else return BAD_KEY_MAT;				cipherKey[i] = (u8)v;	}	if (direction == DIR_ENCRYPT) {		key->Nr = rijndaelKeySetupEnc(key->rk, cipherKey, keyLen);	} else {		key->Nr = rijndaelKeySetupDec(key->rk, cipherKey, keyLen);	}	rijndaelKeySetupEnc(key->ek, cipherKey, keyLen);	return TRUE;}int cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {	if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {		cipher->mode = mode;	} else {		return BAD_CIPHER_MODE;	}	if (IV != NULL) {		int i; 		for (i = 0; i < MAX_IV_SIZE; i++) {			int t, j;			t = IV[2*i];			if ((t >= '0') && (t <= '9')) j = (t - '0') << 4;			else if ((t >= 'a') && (t <= 'f')) j = (t - 'a' + 10) << 4;			else if ((t >= 'A') && (t <= 'F')) j = (t - 'A' + 10) << 4;			else return BAD_CIPHER_INSTANCE;					t = IV[2*i+1];			if ((t >= '0') && (t <= '9')) j ^= (t - '0');			else if ((t >= 'a') && (t <= 'f')) j ^= (t - 'a' + 10);			else if ((t >= 'A') && (t <= 'F')) j ^= (t - 'A' + 10);			else return BAD_CIPHER_INSTANCE;						cipher->IV[i] = (u8)j;		}	} else {		memset(cipher->IV, 0, MAX_IV_SIZE);	}	return TRUE;}int blockEncrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputLen, BYTE *outBuffer) {	int i, k, t, numBlocks;	u8 block[16], *iv;	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_DECRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputLen <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputLen/128;		switch (cipher->mode) {	case MODE_ECB:		for (i = numBlocks; i > 0; i--) {			rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		break;			case MODE_CBC:		iv = cipher->IV;		for (i = numBlocks; i > 0; i--) {			((u32*)block)[0] = ((u32*)input)[0] ^ ((u32*)iv)[0];			((u32*)block)[1] = ((u32*)input)[1] ^ ((u32*)iv)[1];			((u32*)block)[2] = ((u32*)input)[2] ^ ((u32*)iv)[2];			((u32*)block)[3] = ((u32*)input)[3] ^ ((u32*)iv)[3];			rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);			iv = outBuffer;			input += 16;			outBuffer += 16;		}		break;    case MODE_CFB1:		iv = cipher->IV;        for (i = numBlocks; i > 0; i--) {
			memcpy(outBuffer, input, 16);            for (k = 0; k < 128; k++) {				rijndaelEncrypt(key->ek, key->Nr, iv, block);                outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7);                for (t = 0; t < 15; t++) {                	iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);                }               	iv[15] = (iv[15] << 1) | ((outBuffer[k >> 3] >> (7 - (k & 7))) & 1);            }            outBuffer += 16;            input += 16;        }        break;	default:		return BAD_CIPHER_STATE;	}		return 128*numBlocks;}/** * Encrypt data partitioned in octets, using RFC 2040-like padding. * * @param   input           data to be encrypted (octet sequence) * @param   inputOctets		input length in octets (not bits) * @param   outBuffer       encrypted output data * * @return	length in octets (not bits) of the encrypted output buffer. */int padEncrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputOctets, BYTE *outBuffer) {	int i, numBlocks, padLen;	u8 block[16], *iv;	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_DECRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputOctets <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputOctets/16;	switch (cipher->mode) {	case MODE_ECB:		for (i = numBlocks; i > 0; i--) {			rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		padLen = 16 - (inputOctets - 16*numBlocks);		assert(padLen > 0 && padLen <= 16);		memcpy(block, input, 16 - padLen);		memset(block + 16 - padLen, padLen, padLen);		rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);		break;	case MODE_CBC:		iv = cipher->IV;		for (i = numBlocks; i > 0; i--) {			((u32*)block)[0] = ((u32*)input)[0] ^ ((u32*)iv)[0];			((u32*)block)[1] = ((u32*)input)[1] ^ ((u32*)iv)[1];			((u32*)block)[2] = ((u32*)input)[2] ^ ((u32*)iv)[2];			((u32*)block)[3] = ((u32*)input)[3] ^ ((u32*)iv)[3];			rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);			iv = outBuffer;			input += 16;			outBuffer += 16;		}		padLen = 16 - (inputOctets - 16*numBlocks);		assert(padLen > 0 && padLen <= 16);		for (i = 0; i < 16 - padLen; i++) {			block[i] = input[i] ^ iv[i];		}		for (i = 16 - padLen; i < 16; i++) {			block[i] = (BYTE)padLen ^ iv[i];		}		rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);		break;	default:		return BAD_CIPHER_STATE;	}	return 16*(numBlocks + 1);}int blockDecrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputLen, BYTE *outBuffer) {	int i, k, t, numBlocks;	u8 block[16], *iv;	if (cipher == NULL ||		key == NULL ||		cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputLen <= 0) {		return 0; /* nothing to do */	}	numBlocks = inputLen/128;	switch (cipher->mode) {	case MODE_ECB:		for (i = numBlocks; i > 0; i--) {			rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		break;			case MODE_CBC:		iv = cipher->IV;		for (i = numBlocks; i > 0; i--) {			rijndaelDecrypt(key->rk, key->Nr, input, block);			((u32*)block)[0] ^= ((u32*)iv)[0];			((u32*)block)[1] ^= ((u32*)iv)[1];			((u32*)block)[2] ^= ((u32*)iv)[2];			((u32*)block)[3] ^= ((u32*)iv)[3];			memcpy(cipher->IV, input, 16);			memcpy(outBuffer, block, 16);			input += 16;			outBuffer += 16;		}		break;    case MODE_CFB1:		iv = cipher->IV;        for (i = numBlocks; i > 0; i--) {			memcpy(outBuffer, input, 16);
            for (k = 0; k < 128; k++) {				rijndaelEncrypt(key->ek, key->Nr, iv, block);                for (t = 0; t < 15; t++) {                	iv[t] = (iv[t] << 1) | (iv[t + 1] >> 7);                }               	iv[15] = (iv[15] << 1) | ((input[k >> 3] >> (7 - (k & 7))) & 1);                outBuffer[k >> 3] ^= (block[0] & 0x80U) >> (k & 7);            }            outBuffer += 16;            input += 16;        }        break;	default:		return BAD_CIPHER_STATE;	}		return 128*numBlocks;}int padDecrypt(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputOctets, BYTE *outBuffer) {	int i, numBlocks, padLen;	u8 block[16];	if (cipher == NULL ||		key == NULL ||		key->direction == DIR_ENCRYPT) {		return BAD_CIPHER_STATE;	}	if (input == NULL || inputOctets <= 0) {		return 0; /* nothing to do */	}	if (inputOctets % 16 != 0) {		return BAD_DATA;	}	numBlocks = inputOctets/16;	switch (cipher->mode) {	case MODE_ECB:		/* all blocks but last */		for (i = numBlocks - 1; i > 0; i--) {			rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);			input += 16;			outBuffer += 16;		}		/* last block */		rijndaelDecrypt(key->rk, key->Nr, input, block);		padLen = block[15];		if (padLen >= 16) {			return BAD_DATA;		}		for (i = 16 - padLen; i < 16; i++) {			if (block[i] != padLen) {				return BAD_DATA;			}		}		memcpy(outBuffer, block, 16 - padLen);		break;			case MODE_CBC:		/* all blocks but last */		for (i = numBlocks - 1; i > 0; i--) {			rijndaelDecrypt(key->rk, key->Nr, input, block);			((u32*)block)[0] ^= ((u32*)cipher->IV)[0];			((u32*)block)[1] ^= ((u32*)cipher->IV)[1];			((u32*)block)[2] ^= ((u32*)cipher->IV)[2];			((u32*)block)[3] ^= ((u32*)cipher->IV)[3];			memcpy(cipher->IV, input, 16);			memcpy(outBuffer, block, 16);			input += 16;			outBuffer += 16;		}		/* last block */		rijndaelDecrypt(key->rk, key->Nr, input, block);		((u32*)block)[0] ^= ((u32*)cipher->IV)[0];		((u32*)block)[1] ^= ((u32*)cipher->IV)[1];		((u32*)block)[2] ^= ((u32*)cipher->IV)[2];		((u32*)block)[3] ^= ((u32*)cipher->IV)[3];		padLen = block[15];		if (padLen <= 0 || padLen > 16) {			return BAD_DATA;		}		for (i = 16 - padLen; i < 16; i++) {			if (block[i] != padLen) {				return BAD_DATA;			}		}		memcpy(outBuffer, block, 16 - padLen);		break;		default:		return BAD_CIPHER_STATE;	}		return 16*numBlocks - padLen;}#ifdef INTERMEDIATE_VALUE_KAT/** *	cipherUpdateRounds: * *	Encrypts/Decrypts exactly one full block a specified number of rounds. *	Only used in the Intermediate Value Known Answer Test.	 * *	Returns: *		TRUE - on success *		BAD_CIPHER_STATE - cipher in bad state (e.g., not initialized) */int cipherUpdateRounds(cipherInstance *cipher, keyInstance *key,		BYTE *input, int inputLen, BYTE *outBuffer, int rounds) {	u8 block[16];	if (cipher == NULL || key == NULL) {		return BAD_CIPHER_STATE;	}	memcpy(block, input, 16);	switch (key->direction) {	case DIR_ENCRYPT:		rijndaelEncryptRound(key->rk, key->Nr, block, rounds);		break;			case DIR_DECRYPT:		rijndaelDecryptRound(key->rk, key->Nr, block, rounds);		break;			default:		return BAD_KEY_DIR;	} 	memcpy(outBuffer, block, 16);		return TRUE;}#endif /* INTERMEDIATE_VALUE_KAT */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -