📄 fm_syn.m
字号:
function fm_syn(flag)% FM_SYN defines Synchronous Machines%% FM_SYN(FLAG)% FLAG = 1 algebraic equations% FLAG = 2 algebraic Jacobians% FLAG = 3 differential equations% FLAG = 4 state matrix% FLAG = 5 non-windup limits%%see also FM_SYNIT%%Author: Federico Milano%Date: 11-Nov-2002%Version: 1.0.0%%E-mail: fmilano@thunderbox.uwaterloo.ca%Web-site: http://thunderboxx.uwaterloo.ca/~fmilano%% Copyright (C) 2002-2006 Federico Milanoglobal Bus Syn DAE Exc Settings Tgord = Syn.con(:,5);is2 = find(ord == 2);is3 = find(ord == 3);is4 = find(ord == 4);is51 = find(ord == 5.1);is52 = find(ord == 5.2);is53 = find(ord == 5.3);is6 = find(ord == 6);is8 = find(ord == 8);bs2 = Syn.bus(is2);bs3 = Syn.bus(is3);bs4 = Syn.bus(is4);bs51 = Syn.bus(is51);bs52 = Syn.bus(is52);bs53 = Syn.bus(is53);bs6 = Syn.bus(is6);bs8 = Syn.bus(is8);delta = DAE.x(Syn.delta);omega = DAE.x(Syn.omega);e1q = zeros(Syn.n,1);e1d = zeros(Syn.n,1);e2q = zeros(Syn.n,1);e2d = zeros(Syn.n,1);psiq = zeros(Syn.n,1);psid = zeros(Syn.n,1);if (~isempty(is3)), e1q(is3) = DAE.x(Syn.e1q(is3));endif (~isempty(is4)), e1d(is4) = DAE.x(Syn.e1d(is4)); e1q(is4) = DAE.x(Syn.e1q(is4));endif (~isempty(is51)), e1d(is51) = DAE.x(Syn.e1d(is51)); e1q(is51) = DAE.x(Syn.e1q(is51)); e2d(is51) = DAE.x(Syn.e2d(is51));endif (~isempty(is52)), e1q(is52) = DAE.x(Syn.e1q(is52)); e2q(is52) = DAE.x(Syn.e2q(is52)); e2d(is52) = DAE.x(Syn.e2d(is52));endif (~isempty(is53)), e1q(is53) = DAE.x(Syn.e1q(is53)); psid(is53) = DAE.x(Syn.psid(is53)); psiq(is53) = DAE.x(Syn.psiq(is53));endif (~isempty(is6)), e1d(is6) = DAE.x(Syn.e1d(is6)); e1q(is6) = DAE.x(Syn.e1q(is6)); e2d(is6) = DAE.x(Syn.e2d(is6)); e2q(is6) = DAE.x(Syn.e2q(is6));endif (~isempty(is8)), e1d(is8) = DAE.x(Syn.e1d(is8)); e1q(is8) = DAE.x(Syn.e1q(is8)); e2d(is8) = DAE.x(Syn.e2d(is8)); e2q(is8) = DAE.x(Syn.e2q(is8)); psid(is8) = DAE.x(Syn.psid(is8)); psiq(is8) = DAE.x(Syn.psiq(is8));endag = DAE.a(Syn.bus);ss = sin(delta-ag);cc = cos(delta-ag);iM = 1./Syn.con(:,18);D = Syn.con(:,19);ra = Syn.con(:,7); xl = -Syn.con(:,6);xd = Syn.con(:,8); xq = Syn.con(:,13);xd1 = Syn.con(:,9); xq1 = Syn.con(:,14);xd2 = Syn.con(:,10); xq2 = Syn.con(:,15);Td10 = Syn.con(:,11); Tq10 = Syn.con(:,16);Td20 = Syn.con(:,12); Tq20 = Syn.con(:,17);Kw = Syn.con(:,20); Kp = Syn.con(:,21);if ~isempty(is3) a34 = 1./Td10(is3); a35 = a34.*(xd(is3)-xd1(is3));endif ~isempty(is4) a44 = 1./Td10(is4); a45 = a44.*(xd(is4)-xd1(is4)); b43 = 1./Tq10(is4); b44 = b43.*(xq(is4)-xq1(is4));endif ~isempty(is51) gq = xd1(is51)./xq1(is51).*Tq20(is51)./Tq10(is51).*(xq(is51)-xq1(is51)); a514 = 1./Td10(is51); a515 = a514.*(xd(is51)-xd1(is51)); b511 = 1./Tq20(is51); b512 = b511.*(xq1(is51)-xd1(is51)+gq); b513 = 1./Tq10(is51); b514 = b513.*(xq(is51)-xq1(is51)-gq);endif ~isempty(is52) Taa = Syn.con(:,24); gd = xd2(is52)./xd1(is52).*Td20(is52)./Td10(is52).*(xd(is52)-xd1(is52)); a521 = 1./Td20(is52); a522 = a521.*(xd1(is52)-xd2(is52)+gd); a523 = Taa(is52)./Td10(is52)./Td20(is52); a524 = 1./Td10(is52); a525 = a524.*(xd(is52)-xd1(is52)-gd); a526 = a524.*(1-Taa(is52)./Td10(is52)); b521 = 1./Tq20(is52); b522 = b521.*(xq(is52)-xq2(is52));endif ~isempty(is53) a531 = (xd(is53)-xd1(is53))./(xd(is53)+xl(is53)); a532 = 1./(1-a531); a534 = 1./Td10(is53); c534 = 1./(xd(is53)+xl(is53)); c535 = 1./(xq(is53)+xl(is53));endif ~isempty(is6) Taa = Syn.con(:,24); gd = xd2(is6)./xd1(is6).*Td20(is6)./Td10(is6).*(xd(is6)-xd1(is6)); gq = xq2(is6)./xq1(is6).*Tq20(is6)./Tq10(is6).*(xq(is6)-xq1(is6)); a1 = 1./Td20(is6); a2 = a1.*(xd1(is6)-xd2(is6)+gd); a3 = Taa(is6)./Td10(is6)./Td20(is6); a4 = 1./Td10(is6); a5 = a4.*(xd(is6)-xd1(is6)-gd); a6 = a4.*(1-Taa(is6)./Td10(is6)); b1 = 1./Tq20(is6); b2 = b1.*(xq1(is6)-xq2(is6)+gq); b3 = 1./Tq10(is6); b4 = b3.*(xq(is6)-xq1(is6)-gq);endif ~isempty(is8) Taa = Syn.con(:,24); gd = xd2(is8)./xd1(is8).*Td20(is8)./Td10(is8).*(xd(is8)-xd1(is8)); gq = xq2(is8)./xq1(is8).*Tq20(is8)./Tq10(is8).*(xq(is8)-xq1(is8)); a18 = 1./Td20(is8); a28 = a18.*(xd1(is8)-xd2(is8)+gd); a38 = Taa(is8)./Td10(is8)./Td20(is8); a48 = 1./Td10(is8); a58 = a48.*(xd(is8)-xd1(is8)-gd); a68 = a48.*(1-Taa(is8)./Td10(is8)); b18 = 1./Tq20(is8); b28 = b18.*(xq1(is8)-xq2(is8)+gq); b38 = 1./Tq10(is8); b48 = b38.*(xq(is8)-xq1(is8)-gq); xd2(is8) = xd2(is8)+xl(is8); xq2(is8) = xq2(is8)+xl(is8);endswitch flag case 1 % active & reactive powers Syn.Id = -DAE.V(Syn.bus).*(Syn.c1.*ss+Syn.c3.*cc); Syn.Iq = DAE.V(Syn.bus).*(Syn.c2.*ss-Syn.c1.*cc); if ~isempty(is2) Syn.Id(is2) = Syn.Id(is2) + Syn.c3(is2).*Syn.vf(is2); Syn.Iq(is2) = Syn.Iq(is2) + Syn.c1(is2).*Syn.vf(is2); end if ~isempty(is3) Syn.Id(is3) = Syn.Id(is3) + Syn.c3(is3).*e1q(is3); Syn.Iq(is3) = Syn.Iq(is3) + Syn.c1(is3).*e1q(is3); end if ~isempty(is4) Syn.Id(is4) = Syn.Id(is4) + Syn.c1(is4).*e1d(is4) + Syn.c3(is4).*e1q(is4); Syn.Iq(is4) = Syn.Iq(is4) - Syn.c2(is4).*e1d(is4) + Syn.c1(is4).*e1q(is4); end if ~isempty(is51) Syn.Id(is51) = Syn.Id(is51) + Syn.c1(is51).*e2d(is51) + Syn.c3(is51).*e1q(is51); Syn.Iq(is51) = Syn.Iq(is51) - Syn.c2(is51).*e2d(is51) + Syn.c1(is51).*e1q(is51); end if ~isempty(is52) Syn.Id(is52) = Syn.Id(is52) + Syn.c1(is52).*e2d(is52) + Syn.c3(is52).*e2q(is52); Syn.Iq(is52) = Syn.Iq(is52) - Syn.c2(is52).*e2d(is52) + Syn.c1(is52).*e2q(is52); end if ~isempty(is53) Syn.Id(is53) = (e1q(is53)-psid(is53))./(xd(is53)+xl(is53)); Syn.Iq(is53) = -psiq(is53)./(xq(is53)+xl(is53)); end if ~isempty(is6) Syn.Id(is6) = Syn.Id(is6) + Syn.c1(is6).*e2d(is6) + Syn.c3(is6).*e2q(is6); Syn.Iq(is6) = Syn.Iq(is6) - Syn.c2(is6).*e2d(is6) + Syn.c1(is6).*e2q(is6); end if ~isempty(is8) Syn.Id(is8) = (e2q(is8)-psid(is8))./xd2(is8); Syn.Iq(is8) = (-e2d(is8)-psiq(is8))./xq2(is8); end Syn.Pg = -DAE.V(Syn.bus).*(Syn.Id.*ss+Syn.Iq.*cc); Syn.Qg = -DAE.V(Syn.bus).*(Syn.Id.*cc-Syn.Iq.*ss); DAE.gp = DAE.gp + sparse(Syn.bus,1,Syn.Pg,Bus.n,1); DAE.gq = DAE.gq + sparse(Syn.bus,1,Syn.Qg,Bus.n,1); case 2 % Jacobians of active & reactive powers M1 = DAE.V(Syn.bus).*(Syn.c1.*cc-Syn.c3.*ss); M2 = -DAE.V(Syn.bus).*(Syn.c2.*cc+Syn.c1.*ss); M3 = -(Syn.c1.*ss+Syn.c3.*cc); M4 = Syn.c2.*ss-Syn.c1.*cc; Syn.J11 = DAE.V(Syn.bus).*((Syn.Id-M2).*cc-(M1+Syn.Iq).*ss); Syn.J12 = -Syn.Id.*ss-Syn.Iq.*cc-DAE.V(Syn.bus).*(M3.*ss+M4.*cc); Syn.J21 = DAE.V(Syn.bus).*((M2-Syn.Id).*ss-(M1+Syn.Iq).*cc); Syn.J22 = -Syn.Id.*cc+Syn.Iq.*ss-DAE.V(Syn.bus).*(M3.*cc-M4.*ss); DAE.J11 = DAE.J11 + sparse(Syn.bus,Syn.bus,Syn.J11,Bus.n,Bus.n); DAE.J12 = DAE.J12 + sparse(Syn.bus,Syn.bus,Syn.J12,Bus.n,Bus.n); DAE.J21 = DAE.J21 + sparse(Syn.bus,Syn.bus,Syn.J21,Bus.n,Bus.n); DAE.J22 = DAE.J22 + sparse(Syn.bus,Syn.bus,Syn.J22,Bus.n,Bus.n); case 3 % Differential equations % updating Vf and Pm if Exc.n, Syn.vf(Exc.syn) = DAE.x(Exc.vf); end Vf = Syn.vf + Kw.*(omega-1) + Kp.*(Syn.Pg-Syn.Pg0); setpm(Tg); DAE.f(Syn.delta) = Settings.rad*(omega-1); DAE.f(Syn.omega) = (Syn.pm+Syn.Pg-ra.*(Syn.Id.^2+Syn.Iq.^2)-D.*(omega-1)).*iM; % Model III if (~isempty(is3)) DAE.f(Syn.e1q(is3)) = -a34.*Sat(1,e1q,is3) - a35.*Syn.Id(is3) + a34.*Vf(is3); end % Model IV if (~isempty(is4)) DAE.f(Syn.e1q(is4)) = -a44.*Sat(1,e1q,is4) - a45.*Syn.Id(is4) + a44.*Vf(is4); DAE.f(Syn.e1d(is4)) = -b43.*e1d(is4) + b44.*Syn.Iq(is4); end % Model V Type 1 if (~isempty(is51)) DAE.f(Syn.e1q(is51)) = -a514.*Sat(1,e1q,is51) - a515.*Syn.Id(is51) + a514.*Vf(is51); DAE.f(Syn.e1d(is51)) = -b513.*e1d(is51) + b514.*Syn.Iq(is51); DAE.f(Syn.e2d(is51)) = -b511.*e2d(is51) + b511.*e1d(is51) + b512.*Syn.Iq(is51); end % Model V Type 2 if (~isempty(is52)) DAE.f(Syn.e1q(is52)) = -a524.*Sat(1,e1q,is52) - a525.*Syn.Id(is52) + a526.*Vf(is52); DAE.f(Syn.e2q(is52)) = -a521.*e2q(is52) + a521.*e1q(is52) - ... a522.*Syn.Id(is52) + a523.*Vf(is52); DAE.f(Syn.e2d(is52)) = -b521.*e2d(is52) + b522.*Syn.Iq(is52); end % Model V Type 3 if (~isempty(is53)) DAE.f(Syn.psiq(is53)) = ... Settings.rad.*(DAE.V(bs53).*cc(is53) + ... ra(is53).*Syn.Iq(is53) - omega(is53).*psid(is53)); DAE.f(Syn.psid(is53)) = ... Settings.rad.*(DAE.V(bs53).*ss(is53) + ... ra(is53).*Syn.Id(is53) + omega(is53).*psiq(is53)); DAE.f(Syn.e1q(is53)) = (a534.*(Syn.vf(is53)-e1q(is53))- ... a531.*DAE.f(Syn.psid(is53))).*a532; end % Model VI if (~isempty(is6)) DAE.f(Syn.e1q(is6)) = -a4.*Sat(1,e1q,is6) - a5.*Syn.Id(is6) + a6.*Vf(is6); DAE.f(Syn.e1d(is6)) = -b3.*e1d(is6) + b4.*Syn.Iq(is6); DAE.f(Syn.e2q(is6)) = -a1.*e2q(is6) + a1.*e1q(is6) - a2.*Syn.Id(is6) + a3.*Vf(is6); DAE.f(Syn.e2d(is6)) = -b1.*e2d(is6) + b1.*e1d(is6) + b2.*Syn.Iq(is6); end % Model VIII if (~isempty(is8)) DAE.f(Syn.e1q(is8)) = -a48.*Sat(1,e1q,is8) - a58.*Syn.Id(is8) + a68.*Vf(is8); DAE.f(Syn.e1d(is8)) = -b38.*e1d(is8) + b48.*Syn.Iq(is8); DAE.f(Syn.e2q(is8)) = -a18.*e2q(is8) + a18.*e1q(is8) - a28.*Syn.Id(is8) + a38.*Vf(is8); DAE.f(Syn.e2d(is8)) = -b18.*e2d(is8) + b18.*e1d(is8) + b28.*Syn.Iq(is8); DAE.f(Syn.psiq(is8)) = Settings.rad*(DAE.V(bs8).*cc(is8) + ... ra(is8).*Syn.Iq(is8) - omega(is8).*psid(is8)); DAE.f(Syn.psid(is8)) = Settings.rad*(DAE.V(bs8).*ss(is8) + ... ra(is8).*Syn.Id(is8) + omega(is8).*psiq(is8)); end case 4 % Jacobians of differential equations & state variables M1 = DAE.V(Syn.bus).*(Syn.c1.*cc-Syn.c3.*ss); M2 = -DAE.V(Syn.bus).*(Syn.c2.*cc+Syn.c1.*ss); M3 = -(Syn.c1.*ss+Syn.c3.*cc); M4 = Syn.c2.*ss-Syn.c1.*cc; Wn = Settings.rad; % common Jacobians
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -