📄 fm_opfsdr.m
字号:
mu_Iijcmax= mu(idx+nL); idx = idx + Line.n; mu_Ijimax = mu(idx+nL); idx = idx + Line.n; mu_Ijicmax= mu(idx+nL); idx = idx + Line.n; if Rsrv.n mu_Prmin = mu(idx+nR); idx = idx + Rsrv.n; mu_Prmax = mu(idx+nR); idx = idx + Rsrv.n; mu_sumPrd = mu(idx+1); end % Computations for the System: f(thetac,Vc,Qgc,Ps,Pd,lc) = 0 % ===================================================== V_snap = DAE.V; ang_snap = DAE.a; DAE.V = Vc; DAE.a = angc; DAE.Gl = zeros(n2,1); DAE.Gk = zeros(n2,1); if OPF.line, Line.Y = Y_cont; Line.con = line_cont; end fm_lf(1); glambda(SW,1+lc,kg); glambda(PV,1+lc,kg); glambda(PQ,1+lc); Glcall(SW); Gkcall(SW); Glcall(PV); Gkcall(PV); Glcall(PQ); % generator reactive powers DAE.gq = DAE.gq - sparse(busG,1,Qgc,Bus.n,1); % Demand & Supply DAE.gp = DAE.gp + sparse(Demand.bus,1,(1+lc)*Pd,Bus.n,1); DAE.gq = DAE.gq + sparse(Demand.bus,1,(1+lc)*Pd.*qonp,Bus.n,1); DAE.Gl = DAE.Gl + sparse(Demand.bus,1,Pd,2*Bus.n,1); DAE.Gl = DAE.Gl + sparse(Demand.bus+Bus.n,1,Pd.*qonp,2*Bus.n,1); g_Pdc = sparse(Demand.bus,nD,1+lc,2*Bus.n,Demand.n); g_Pdc = sparse(Demand.bus+Bus.n,nD,(1+lc)*qonp,2*Bus.n,Demand.n); DAE.gp = DAE.gp - sparse(Supply.bus,1,(1+lc+kg*ksu).*Ps,Bus.n,1); g_Psc = sparse(Supply.bus,nS,-(1+lc+kg*ksu),2*Bus.n,Supply.n); DAE.Gl = DAE.Gl - sparse(Supply.bus,1,Ps,2*Bus.n,1); DAE.Gk = DAE.Gk - sparse(Supply.bus,1,ksu.*Ps,2*Bus.n,1); gc1p = DAE.gp; gc2p = DAE.glfp; gc1q = DAE.gq; gc2q = DAE.glfq; fm_lf(2); Jlfvc = [DAE.J11, DAE.J12; DAE.J21, DAE.J22]; [Iijc, Jijc, Hijc, Ijic, Jjic, Hjic] = fm_flows(OPF.flow,mu_Iijcmax, mu_Ijicmax); % Computations for the System: f(theta,V,Qg,Ps,Pd) = 0 % ===================================================== DAE.V = V_snap; DAE.a = ang_snap; if OPF.line, Line.Y = Y_orig; Line.con = line_orig; end fm_lf(1); gcall(PQ); glambda(SW,1,0); glambda(PV,1,0); % Demand & Supply DAE.gp = DAE.gp + sparse(Demand.bus,1,Pd,Bus.n,1); DAE.gq = DAE.gq + sparse(Demand.bus,1,Pd.*qonp,Bus.n,1); DAE.gp = DAE.gp - sparse(Supply.bus,1,Ps,Bus.n,1); DAE.gq = DAE.gq - sparse(busG,1,Qg,Bus.n,1); fm_lf(2); Jlfv = [DAE.J11, DAE.J12; DAE.J21, DAE.J22]; [Iij, Jij, Hij, Iji, Jji, Hji] = fm_flows(OPF.flow,mu_Iijmax, mu_Ijimax); % Gradient of [s] variables % ===================================================== gs = s.*mu - ms; % Gradient of [mu] variables % ===================================================== gmu = [Psmin-Ps;Ps-Psmax;Pdmin-Pd;Pd-Pdmax;Qgmin-Qg;Qg-Qgmax; ... Vmin-DAE.V;DAE.V-Vmax;Qgmin-Qgc;Qgc-Qgmax;Vcmin-Vc;Vc-Vcmax; ... lcmin-lc;lc-lcmax;Iij-Iijmax;Iijc-Iijcmax;Iji-Iijmax; ... Ijic-Iijcmax]; if Rsrv.n gmu(Supply.n+supR) = gmu(Supply.n+supR) + Pr; gmu = [gmu; Prmin-Pr;Pr-Prmax;sum(Pr)-sum(Pd)]; end gmu = gmu + s; % Gradient of [y] = [theta; DAE.V; Qg; Ps; Pd] variables % ===================================================== if Rsrv.n, Jg = [Jlfv,g_Qg,g_Ps,g_Pd,Jz1; ... Jz2,g_Psc,g_Pdc,Jlfvc,DAE.Gk,g_Qgc,DAE.Gl,g_Pr]; else, Jg = [Jlfv,g_Qg,g_Ps,g_Pd,Jz1; ... Jz2,g_Psc,g_Pdc,Jlfvc,DAE.Gk,g_Qgc,DAE.Gl]; end dF_dy = Jg'*ro; dG_dy(n_d) = -w; % max loading factor dG_dy(n2+n_gen+1:n2+n_gen+Supply.n) = (1-w)*(Csb + 2*Csc.*Ps + 2*KTBS.*Ps); dG_dy(n2+n_gen+Supply.n+1:n2+n_a) = -(1-w)*(Cdb + 2*Cdc.*Pd + 2*KTBD.*Pd ... + qonp.*(Ddb + 2*qonp.*Ddc.*Pd)); dG_dy(n2+nS) = (1-w)*(Dsb + 2*Dsc.*Qg(nS)); dH_dtV = Jij'*mu_Iijmax + Jji'*mu_Ijimax + [mu_t; mu_Vmax - mu_Vmin]; dH_dtVc = Jijc'*mu_Iijcmax + Jjic'*mu_Ijicmax + [mu_t; mu_Vcmax - mu_Vcmin]; if Rsrv.n, dH_dy = [dH_dtV; mu_Qgmax-mu_Qgmin; mu_Psmax-mu_Psmin; ... mu_Pdmax-mu_Pdmin-mu_sumPrd; ... dH_dtVc; 0; mu_Qgcmax - mu_Qgcmin; mu_lcmax - mu_lcmin; ... mu_Psmax+mu_Prmax-mu_Prmin+mu_sumPrd]; else dH_dy = [dH_dtV; mu_Qgmax-mu_Qgmin; mu_Psmax-mu_Psmin; mu_Pdmax-mu_Pdmin; ... dH_dtVc; 0; mu_Qgcmax - mu_Qgcmin; mu_lcmax - mu_lcmin]; end gy = dG_dy - dF_dy + dH_dy; Jh(n_b+1:n_b+Line.n,1:n2) = Jij; Jh(n_b+1+Line.n:n_b+2*Line.n,1+n2+n_a:n4+n_a) = Jijc; Jh(n_b+1+2*Line.n:n_b+3*Line.n,1:n2) = Jji; Jh(n_b+1+3*Line.n:n_b+4*Line.n,1+n2+n_a:n4+n_a) = Jjic; % Hessian Matrix [D2xLms] % -------------------------------------------------------------------- H3 = sparse(n_a,n_y); Hx = -ro(n2+Supply.bus); Sidx = 1:Supply.n; H3(n_gen+Sidx,n_d) = Hx; H3(n_gen+Sidx,n4+1+n_a) = Hx.*ksu; H5(n_gen+1,n2+n_gen+Sidx) = Hx'; H41(end,n2+n_gen+Sidx) = Hx'.*ksu'; Didx = 1:Demand.n; Hx = ro(n2+Demand.bus) + qonp.*ro(n3+Demand.bus); H3(n_gen+Supply.n+Didx,n_d) = Hx; H5(n_gen+1,n2+n_gen+Supply.n+Didx) = Hx'; H3 = H3 - sparse(n_gen+nS,n2+n_gen+nS,(1-w)*(2*Csc+2*KTBS),n_a,n_y); H3 = H3 - sparse(nS,n2+nS,(1-w)*2*Dsc,n_a,n_y); H3 = H3 + sparse(n_gen+Supply.n+nD,n_gen+Supply.n+n2+nD, ... (1-w)*(2*Cdc+2*KTBD+2*Ddc.*qonp.*qonp),n_a,n_y); V_snap = DAE.V; ang_snap = DAE.a; DAE.V = Vc; DAE.a = angc; if OPF.line, Line.Y = Y_cont; end Hess_c = -fm_hessian(ro(n2+1:n4))+Hijc+Hjic; DAE.V = V_snap; DAE.a = ang_snap; if OPF.line, Line.Y = Y_orig; end Hess = -fm_hessian(ro(1:n2))+Hij+Hji; D2xLms = [Hess, H31; -H3; -H41, [Hess_c, Hcolk; Hrowk], H42; -H5]; switch OPF.method case 1 % Newton Directions % reduced system H_m = sparse(1:n_s,1:n_s,mu./s,n_s,n_s); H_s = sparse(1:n_s,1:n_s,1./s,n_s,n_s); Jh(:,SW.bus+n2+n_a) = 0; Jh(:,SW.bus) = 0; gy = gy+(Jh.')*(H_m*gmu-H_s*gs); Jd = [D2xLms+(Jh.')*(H_m*Jh),-Jg.';-Jg,Z3]; % reference angle for the actual system Jd(SW.bus,:) = 0; Jd(:,SW.bus) = 0; Jd(SW.bus,SW.bus) = speye(SW.n); gy(SW.bus) = 0; % reference angle for the critical system Jd(:,SW.bus+n2+n_a) = 0; Jd(SW.bus+n2+n_a,:) = 0; Jd(SW.bus+n2+n_a,SW.bus+n2+n_a) = speye(SW.n); gy(SW.bus+n2+n_a) = 0; % variable increments Dx = -Jd\[gy; -DAE.gp; -DAE.gq; -gc1p; -gc1q]; Ds = -(gmu+Jh*Dx([1:n_y])); Dm = -H_s*gs-H_m*Ds; case 2 % Mehrotra's Predictor-Corrector % ------------------- % Predictor step % ------------------- % reduced system H_m = sparse(1:n_s,1:n_s,mu./s,n_s,n_s); Jh(:,SW.bus+n2+n_a) = 0; Jh(:,SW.bus) = 0; gx = gy+(Jh.')*(H_m*gmu-mu); Jd = [D2xLms+(Jh.')*(H_m*Jh),-Jg.';-Jg,Z3]; % reference angle for the actual system Jd(SW.bus,:) = 0; Jd(:,SW.bus) = 0; Jd(SW.bus,SW.bus) = speye(SW.n); gx(SW.bus) = 0; % reference angle for the critical system Jd(:,SW.bus+n2+n_a) = 0; Jd(SW.bus+n2+n_a,:) = 0; Jd(SW.bus+n2+n_a,SW.bus+n2+n_a) = speye(SW.n); gx(SW.bus+n2+n_a) = 0; % LU factorization [L,U,P] = lu(Jd); % variable increments Dx = -U\(L\(P*[gx; -DAE.gp; -DAE.gq; -gc1p; -gc1q])); Ds = -(gmu+Jh*Dx([1:n_y])); Dm = -mu-H_m*Ds; % centering correction a1 = find(Ds < 0); a2 = find(Dm < 0); if isempty(a1), ratio1 = 1; else, ratio1 = -s(a1)./Ds(a1); end if isempty(a2), ratio2 = 1; else, ratio2 = -mu(a2)./Dm(a2); end alpha_P = min(1,gamma*min(ratio1)); alpha_D = min(1,gamma*min(ratio2)); c_gap_af = [s + alpha_P*Ds]'*[mu + alpha_D*Dm]; c_gap = s'*mu; ms = min((c_gap_af/c_gap)^2,0.2)*c_gap_af/n_s; gs = mu+(Ds.*Dm-ms)./s; % ------------------- % Corrector Step % ------------------- % new increment for variable y gx = gy+(Jh.')*(H_m*gmu-gs); gx(SW.bus) = 0; gx(SW.bus+n2+n_a) = 0; % variable increments Dx = -U\(L\(P*[gx; -DAE.gp; -DAE.gq; -gc1p; -gc1q])); Ds = -(gmu+Jh*Dx([1:n_y])); Dm = -gs-H_m*Ds; end % ======================================================================= % Variable Increments % ======================================================================= Dtheta = Dx(nB); idx = Bus.n; % curr. sys. DV = Dx(idx+nB); idx = idx + Bus.n; DQg = Dx(idx+nG); idx = idx + n_gen; DPs = Dx(idx+nS); idx = idx + Supply.n; DPd = Dx(idx+nD); idx = idx + Demand.n; Dthetac = Dx(idx+nB); idx = idx + Bus.n; % crit. sys. DVc = Dx(idx+nB); idx = idx + Bus.n; Dkg = Dx(1+idx); idx = idx + 1; DQgc = Dx(idx+nG); idx = idx + n_gen; Dlc = Dx(1+idx); idx = idx + 1; if Rsrv.n, DPr = Dx(idx+nR); idx = idx + Rsrv.n; end Dro = Dx(1+idx:end); % Lag. mult. % ======================================================================= % Updating the Variables % ======================================================================= % Step Lenght Parameters [alpha_P & alpha_D] %________________________________________________________________________ a1 = find(Ds < 0); a2 = find(Dm < 0); if isempty(a1), ratio1 = 1; else, ratio1 = (-s(a1)./Ds(a1)); end if isempty(a2), ratio2 = 1; else, ratio2 = (-mu(a2)./Dm(a2)); end alpha_P = min(1,gamma*min(ratio1)); alpha_D = min(1,gamma*min(ratio2)); % New primal variables %________________________________________________________________________ DAE.a = DAE.a + alpha_P * Dtheta; DAE.V = DAE.V + alpha_P * DV; Ps = Ps + alpha_P * DPs; Pd = Pd + alpha_P * DPd; Qg = Qg + alpha_P * DQg; if Rsrv.n, Pr = Pr + alpha_P * DPr; end angc = angc + alpha_P * Dthetac; Vc = Vc + alpha_P * DVc; kg = kg + alpha_P * Dkg; Qgc = Qgc + alpha_P * DQgc; lc = lc + alpha_P * Dlc; s = s + alpha_P * Ds; % New dual variables %________________________________________________________________________ ro = ro + alpha_D*Dro; mu = mu + alpha_D*Dm; % Objective Function %________________________________________________________________________ s(find(s == 0)) = epsilon_mu; Fixd_c = sum(Csa) - sum(Cda) + sum(Dsa) - sum(Dda); Prop_c = Csb'*Ps - Cdb'*Pd + Dsb'*Qg(nS) - Ddb'*(qonp.*Pd); TieBreaking = (sum(KTBS.*Ps.*Ps) - sum(KTBD.*Pd.*Pd)); Quad_c = Csc'*(Ps.*Ps) - Cdc'*(Pd.*Pd) - Ddc'*(qonp.*qonp.*Pd.*Pd); Quad_q = Dsc'*(Qg(nS).*Qg(nS)); if Rsrv.n, Reserve = Cr'*Pr; else, Reserve = 0; end G_obj = (1-w)*(Fixd_c + Prop_c + Quad_c + Quad_q + TieBreaking + Reserve) - ... ms*sum(log(s)) - w*lc; % ======================================================================= % Reducing the Barrier Parameter % ======================================================================= sigma = max(0.99*sigma, 0.1); % Centering Parameter c_gap = s'*mu; % Complementarity Gap ms = min(abs(sigma*c_gap/n_s),1); % Evaluation of the Barrier Parameter % ======================================================================= % Testing for Convergence % ======================================================================= test1 = ms <= epsilon_mu; norma2 = norm(Dx,inf); test2 = norma2 <= epsilon_2; norma3 = norm([DAE.gp; DAE.gq; gc1p; gc1q],inf); test3 = norma3 <= epsilon_1; norma4 = abs(G_obj-G_obj_k_1)/(1+abs(G_obj)); test4 = norma4 <= epsilon_2; if test1 & test2 & test3 & test4, break, end % Displaying Convergence Tests %________________________________________________________________________ iteration = iteration + 1; if OPF.show fm_disp(['Iter. =',fvar(iteration,5),' mu =', fvar(ms,8), ... ' |dy| =', fvar(norma2,8), ' |f(y)| =', ... fvar(norma3,8),' |dG(y)| =' fvar(norma4,8)]) end fm_status('opf','update',[iteration, ms, norma2, norma3, norma4], ... iteration) if iteration > iter_max, break, endend% Some settings ...%____________________________________________________________________________warning('on');Demand = pset(Demand,Pd);Supply = pset(Supply,Ps);if Rsrv.n, Rsrv.con(:,10) = Pr; endIij = sqrt(Iij);Iji = sqrt(Iji);Iijc = sqrt(Iijc);Ijic = sqrt(Ijic);Iijmax = sqrt(Iijmax);Iijcmax = sqrt(Iijcmax);MVA = Settings.mva;Pay = ro(1:Bus.n).*DAE.glfp*MVA;ISOPay = sum(Pay);% Nodal Congestion Prices (NCPs)%____________________________________________________________________________Jlfv(SW.bus,:) = [];Jlfv(:,SW.bus) = [];dH_dtV(SW.bus,:) = [];NCP = -Jlfv'\dH_dtV;OPF.NCP = [NCP(1:SW.bus-1);0;NCP(SW.bus:end)];OPF.obj = G_obj;OPF.ms = ms;OPF.dy = norma2;OPF.dF = norma3;OPF.dG = norma4;OPF.iter = iteration;OPF.gpc = gc2p;OPF.gqc = gc2q;SNB.init = 0;LIB.init = 0;CPF.init = 0;OPF.init = 2;% set Pg, Qg, Pl and QlBus.Pl = OPF.basepl*Snapshot(1).Pl + sparse(Demand.bus,1,Pd,Bus.n,1);Bus.Ql = OPF.basepl*Snapshot(1).Ql + sparse(Demand.bus,1,Pd.*qonp,Bus.n,1);Bus.Pg = OPF.basepg*Snapshot(1).Pg + sparse(Supply.bus,1,Ps,Bus.n,1);Bus.Qg = OPF.basepg*Snapshot(1).Qg + sparse(busG,1,Qg,Bus.n,1);% Display Results% --------------------------------------------------TPQ = totp(PQ);if (Settings.showlf | OPF.show) & clpsat.showopf OPF.report = cell(1,1); OPF.report{1,1} = ['Weighting Factor = ',fvar(w,8)]; OPF.report{2,1} = ['Lambda = ',fvar(lc,8)]; OPF.report{3,1} = ['Kg = ',fvar(kg,8)]; OPF.report{4,1} = ['Total Losses = ',fvar(sum(DAE.glfp),8),' [p.u.]']; OPF.report{5,1} = ['Bid Losses = ',fvar(sum(DAE.glfp)-Snapshot(1).Ploss,8),' [p.u.]']; if ~noDem OPF.report{6,1} = ['Total demand = ', ... fvar(sum(Pd),8),' [p.u.]']; end OPF.report{6+(~noDem),1} = ['TTL = ',fvar(sum(Pd)+TPQ,8),' [p.u.]']; fm_disp fm_disp('----------------------------------------------------------------') Settings.lftime = toc; if Fig.stat, fm_stat; end if iteration > iter_max fm_disp('IPM-OPF: Method did not Converge',2) elseif Fig.main if ~get(Fig.main,'UserData') fm_disp('IPM-OPF: Interrupted',2) else fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1) end else fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1) if Settings.showlf == 1 fm_stat(OPF.report); else if Settings.beep beep end end end fm_status('opf','close')else if iteration > iter_max fm_disp('IPM-OPF: Method did not Converge',2) elseif Fig.main if ~get(Fig.main,'UserData') fm_disp(['IPM-OPF: Interrupted'],2) else fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1) end else fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1) endendif iteration > iter_max, OPF.conv = 0;else, OPF.conv = 1;endif Rsrv.n, OPF.guess = [s; mu; DAE.a; DAE.V; Qg; Ps; Pd; ... angc; Vc; kg; Qgc; lc; Pr; ro];else OPF.guess = [s; mu; DAE.a; DAE.V; Qg; Ps; Pd; ... angc; Vc; kg; Qgc; lc; ro];endOPF.atc = (1+lc)*(sum(Pd)+TPQ)*MVA;OPF.Vc = Vc;OPF.ac = angc;if noDem, Demand = restore(Demand); endPQ = resetvlim(PQ);if ~OPF.basepl PQ = pqreset(PQ,'all');endif ~OPF.basepg SW = swreset(SW,'all'); PV = pvreset(PV,'all');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -