📄 k_means_clustering_result.htm
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0053)http://www.nadine.com/k-means%20clustering/kmeans.php -->
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=windows-1256">
<META content="MSHTML 6.00.2900.3086" name=GENERATOR></HEAD>
<BODY>
<TABLE border=1>
<TBODY>
<TR>
<TD>Echantillon</TD>
<TD>Profondeur</TD>
<TD>Couleur</TD></TR>
<TR>
<TD>1</TD>
<TD>2</TD>
<TD>1</TD></TR>
<TR>
<TD>2</TD>
<TD>4</TD>
<TD>1</TD></TR>
<TR>
<TD>3</TD>
<TD>5</TD>
<TD>1</TD></TR>
<TR>
<TD>4</TD>
<TD>6</TD>
<TD>1</TD></TR>
<TR>
<TD>5</TD>
<TD>1</TD>
<TD>2</TD></TR>
<TR>
<TD>6</TD>
<TD>2</TD>
<TD>2</TD></TR>
<TR>
<TD>7</TD>
<TD>7</TD>
<TD>2</TD></TR>
<TR>
<TD>8</TD>
<TD>2</TD>
<TD>3</TD></TR></TBODY></TABLE><BR><FONT color=#00b0e0 size=5><B><U>Centres
initiaux</U></B>:C0(2,1) & C1(2,3)</FONT><BR><BR><FONT color=turquoise
size=4><B><U>Tableau de distances avec les centres et de groupes
obtenus:</B></U></FONT><BR><BR>
<TABLE border=1>
<TBODY>
<TR>
<TD>c0</TD>
<TD>c1</TD>
<TD>min</TD></TR>
<TR>
<TD>0</TD>
<TD>2</TD>
<TD>0</TD></TR>
<TR>
<TD>2</TD>
<TD>2.8284271247462</TD>
<TD>0</TD></TR>
<TR>
<TD>3</TD>
<TD>3.605551275464</TD>
<TD>0</TD></TR>
<TR>
<TD>4</TD>
<TD>4.4721359549996</TD>
<TD>0</TD></TR>
<TR>
<TD>1.4142135623731</TD>
<TD>1.4142135623731</TD>
<TD>0</TD></TR>
<TR>
<TD>1</TD>
<TD>1</TD>
<TD>0</TD></TR>
<TR>
<TD>5.0990195135928</TD>
<TD>5.0990195135928</TD>
<TD>0</TD></TR>
<TR>
<TD>2</TD>
<TD>0</TD>
<TD>1</TD></TR>
<TR></TR></TBODY></TABLE><BR><FONT color=teal size=4><B><U>nouveau
c0:</U></B></FONT> (3.8571428571429 1.4285714285714)<BR><FONT
color=teal size=4><B><U>nouveau c1 :</U></B></FONT> (2
3)</FONT><BR><BR><BR><FONT color=turquoise size=4><B><U>Tableau de
distances avec les centres et de groupes obtenus:</B></U></FONT><BR><BR>
<TABLE border=1>
<TBODY>
<TR>
<TD>c0</TD>
<TD>c1</TD>
<TD>min</TD></TR>
<TR>
<TD>1.9059520091609</TD>
<TD>2</TD>
<TD>0</TD></TR>
<TR>
<TD>0.45175395145263</TD>
<TD>2.8284271247462</TD>
<TD>0</TD></TR>
<TR>
<TD>1.2205719636168</TD>
<TD>3.605551275464</TD>
<TD>0</TD></TR>
<TR>
<TD>2.1852940772541</TD>
<TD>4.4721359549996</TD>
<TD>0</TD></TR>
<TR>
<TD>2.9137254363387</TD>
<TD>1.4142135623731</TD>
<TD>1</TD></TR>
<TR>
<TD>1.9430672155336</TD>
<TD>1</TD>
<TD>1</TD></TR>
<TR>
<TD>3.1943828249997</TD>
<TD>5.0990195135928</TD>
<TD>0</TD></TR>
<TR>
<TD>2.4327694808466</TD>
<TD>0</TD>
<TD>1</TD></TR>
<TR></TR></TBODY></TABLE><BR><FONT color=teal size=4><B><U>nouveau
c0:</U></B></FONT> (4.8 1.2)<BR><FONT color=teal
size=4><B><U>nouveau c1 :</U></B></FONT> (1.6666666666667
2.3333333333333)</FONT><BR><BR><BR><FONT color=turquoise
size=4><B><U>Tableau de distances avec les centres et de groupes
obtenus:</B></U></FONT><BR><BR>
<TABLE border=1>
<TBODY>
<TR>
<TD>c0</TD>
<TD>c1</TD>
<TD>min</TD></TR>
<TR>
<TD>2.8071337695236</TD>
<TD>1.3743685418726</TD>
<TD>1</TD></TR>
<TR>
<TD>0.82462112512353</TD>
<TD>2.6874192494328</TD>
<TD>0</TD></TR>
<TR>
<TD>0.28284271247462</TD>
<TD>3.590109871423</TD>
<TD>0</TD></TR>
<TR>
<TD>1.2165525060596</TD>
<TD>4.5338235029118</TD>
<TD>0</TD></TR>
<TR>
<TD>3.8832975677895</TD>
<TD>0.74535599249993</TD>
<TD>1</TD></TR>
<TR>
<TD>2.9120439557122</TD>
<TD>0.47140452079103</TD>
<TD>1</TD></TR>
<TR>
<TD>2.3409399821439</TD>
<TD>5.3437398472938</TD>
<TD>0</TD></TR>
<TR>
<TD>3.3286633954186</TD>
<TD>0.74535599249993</TD>
<TD>1</TD></TR>
<TR></TR></TBODY></TABLE><BR><FONT color=teal size=4><B><U>nouveau
c0:</U></B></FONT> (5.5 1.25)<BR><FONT color=teal
size=4><B><U>nouveau c1 :</U></B></FONT> (1.75
2)</FONT><BR><BR><BR>Si on compl鑤era on obtiendra les m阭es centres donc
on arr阾e avec un<BR><FONT color=#2a8ee6 size=5><B><U>Resultat
Final:</U></B></FONT><BR><BR><FONT color=#00b0e0
size=5><B><U>classs1:</U></B></FONT> 2 (4 1 ) and
3 (5 1 ) and
4 (6 1 ) and
7 (7 2 )<BR><FONT color=#00b0e0 size=5><B><U>classs2:</U></B></FONT> 1 (2
1 ) and 5 (1 2 )
and 6 (2 2 )
and 8 (2 3 )</TABLE> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -