⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 region_seg.m

📁 This code and doucument describe the image segementation using active contore models [snake].
💻 M
字号:
% Region Based Active Contour Segmentation%% seg = region_seg(I,init_mask,max_its,alpha,display)%% Inputs: I           2D image%         init_mask   Initialization (1 = foreground, 0 = bg)%         max_its     Number of iterations to run segmentation for%         alpha       (optional) Weight of smoothing term%                       higer = smoother.  default = 0.2%         display     (optional) displays intermediate outputs%                       default = true%% Outputs: seg        Final segmentation mask (1=fg, 0=bg)%% Description: This code implements the paper: "Active Contours Without% Edges" By Chan Vese. This is a nice way to segment images whose% foregrounds and backgrounds are statistically different and homogeneous.%% Example:% img = imread('tire.tif');% m = zeros(size(img));% m(33:33+117,44:44+128) = 1;% seg = region_seg(img,m,500);%% Coded by: Shawn Lankton (www.shawnlankton.com)%------------------------------------------------------------------------function seg = region_seg(I,init_mask,max_its,alpha,display)    %-- default value for parameter alpha is .1  if(~exist('alpha','var'))     alpha = .2;   end  %-- default behavior is to display intermediate outputs  if(~exist('display','var'))    display = true;  end  %-- ensures image is 2D double matrix  I = im2graydouble(I);        %-- Create a signed distance map (SDF) from mask  phi = mask2phi(init_mask);    %--main loop  for its = 1:max_its   % Note: no automatic convergence test    idx = find(phi <= 1.2 & phi >= -1.2);  %get the curve's narrow band        %-- find interior and exterior mean    upts = find(phi<=0);                 % interior points    vpts = find(phi>0);                  % exterior points    u = sum(I(upts))/(length(upts)+eps); % interior mean    v = sum(I(vpts))/(length(vpts)+eps); % exterior mean        F = (I(idx)-u).^2-(I(idx)-v).^2;         % force from image information    curvature = get_curvature(phi,idx);  % force from curvature penalty        dphidt = F./max(abs(F)) + alpha*curvature;  % gradient descent to minimize energy        %-- maintain the CFL condition    dt = .45/(max(dphidt)+eps);            %-- evolve the curve    phi(idx) = phi(idx) + dt.*dphidt;    %-- Keep SDF smooth    phi = sussman(phi, .5);    %-- intermediate output    if((display>0)&&(mod(its,20) == 0))       showCurveAndPhi(I,phi,its);      end  end    %-- final output  if(display)    showCurveAndPhi(I,phi,its);  end    %-- make mask from SDF  seg = phi<=0; %-- Get mask from levelset  %---------------------------------------------------------------------%---------------------------------------------------------------------%-- AUXILIARY FUNCTIONS ----------------------------------------------%---------------------------------------------------------------------%---------------------------------------------------------------------    %-- Displays the image with curve superimposedfunction showCurveAndPhi(I, phi, i)  imshow(I,'initialmagnification',200,'displayrange',[0 255]); hold on;  contour(phi, [0 0], 'g','LineWidth',4);  contour(phi, [0 0], 'k','LineWidth',2);  hold off; title([num2str(i) ' Iterations']); drawnow;  %-- converts a mask to a SDFfunction phi = mask2phi(init_a)  phi=bwdist(init_a)-bwdist(1-init_a)+im2double(init_a)-.5;  %-- compute curvature along SDFfunction curvature = get_curvature(phi,idx)    [dimy, dimx] = size(phi);            [y x] = ind2sub([dimy,dimx],idx);  % get subscripts    %-- get subscripts of neighbors    ym1 = y-1; xm1 = x-1; yp1 = y+1; xp1 = x+1;    %-- bounds checking      ym1(ym1<1) = 1; xm1(xm1<1) = 1;                  yp1(yp1>dimy)=dimy; xp1(xp1>dimx) = dimx;        %-- get indexes for 8 neighbors    idup = sub2ind(size(phi),yp1,x);        iddn = sub2ind(size(phi),ym1,x);    idlt = sub2ind(size(phi),y,xm1);    idrt = sub2ind(size(phi),y,xp1);    idul = sub2ind(size(phi),yp1,xm1);    idur = sub2ind(size(phi),yp1,xp1);    iddl = sub2ind(size(phi),ym1,xm1);    iddr = sub2ind(size(phi),ym1,xp1);        %-- get central derivatives of SDF at x,y    phi_x  = -phi(idlt)+phi(idrt);    phi_y  = -phi(iddn)+phi(idup);    phi_xx = phi(idlt)-2*phi(idx)+phi(idrt);    phi_yy = phi(iddn)-2*phi(idx)+phi(idup);    phi_xy = -0.25*phi(iddl)-0.25*phi(idur)...             +0.25*phi(iddr)+0.25*phi(idul);    phi_x2 = phi_x.^2;    phi_y2 = phi_y.^2;        %-- compute curvature (Kappa)    curvature = ((phi_x2.*phi_yy + phi_y2.*phi_xx - 2*phi_x.*phi_y.*phi_xy)./...              (phi_x2 + phi_y2 +eps).^(3/2)).*(phi_x2 + phi_y2).^(1/2);          %-- Converts image to one channel (grayscale) doublefunction img = im2graydouble(img)      [dimy, dimx, c] = size(img);  if(isfloat(img)) % image is a double    if(c==3)       img = rgb2gray(uint8(img));     end  else           % image is a int    if(c==3)       img = rgb2gray(img);     end    img = double(img);  end%-- level set re-initialization by the sussman methodfunction D = sussman(D, dt)  % forward/backward differences  a = D - shiftR(D); % backward  b = shiftL(D) - D; % forward  c = D - shiftD(D); % backward  d = shiftU(D) - D; % forward    a_p = a;  a_n = a; % a+ and a-  b_p = b;  b_n = b;  c_p = c;  c_n = c;  d_p = d;  d_n = d;    a_p(a < 0) = 0;  a_n(a > 0) = 0;  b_p(b < 0) = 0;  b_n(b > 0) = 0;  c_p(c < 0) = 0;  c_n(c > 0) = 0;  d_p(d < 0) = 0;  d_n(d > 0) = 0;    dD = zeros(size(D));  D_neg_ind = find(D < 0);  D_pos_ind = find(D > 0);  dD(D_pos_ind) = sqrt(max(a_p(D_pos_ind).^2, b_n(D_pos_ind).^2) ...                       + max(c_p(D_pos_ind).^2, d_n(D_pos_ind).^2)) - 1;  dD(D_neg_ind) = sqrt(max(a_n(D_neg_ind).^2, b_p(D_neg_ind).^2) ...                       + max(c_n(D_neg_ind).^2, d_p(D_neg_ind).^2)) - 1;    D = D - dt .* sussman_sign(D) .* dD;  %-- whole matrix derivativesfunction shift = shiftD(M)  shift = shiftR(M')';function shift = shiftL(M)  shift = [ M(:,2:size(M,2)) M(:,size(M,2)) ];function shift = shiftR(M)  shift = [ M(:,1) M(:,1:size(M,2)-1) ];function shift = shiftU(M)  shift = shiftL(M')';  function S = sussman_sign(D)  S = D ./ sqrt(D.^2 + 1);      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -