📄 os_unix.c
字号:
int r; fd = open(zDirname, O_RDONLY|O_BINARY, 0); OSTRACE3("DIRSYNC %-3d (%s)\n", fd, zDirname); if( fd<0 ){ return SQLITE_CANTOPEN; } r = fsync(fd); close(fd); SimulateIOError( r=1 ); if( r ){ return SQLITE_IOERR_DIR_FSYNC; }else{ return SQLITE_OK; }#endif}/*** Truncate an open file to a specified size*/static int unixTruncate(OsFile *id, i64 nByte){ int rc; assert( id ); rc = ftruncate(((unixFile*)id)->h, (off_t)nByte); SimulateIOError( rc=1 ); if( rc ){ return SQLITE_IOERR_TRUNCATE; }else{ return SQLITE_OK; }}/*** Determine the current size of a file in bytes*/static int unixFileSize(OsFile *id, i64 *pSize){ int rc; struct stat buf; assert( id ); rc = fstat(((unixFile*)id)->h, &buf); SimulateIOError( rc=1 ); if( rc!=0 ){ return SQLITE_IOERR_FSTAT; } *pSize = buf.st_size; return SQLITE_OK;}/*** This routine checks if there is a RESERVED lock held on the specified** file by this or any other process. If such a lock is held, return** non-zero. If the file is unlocked or holds only SHARED locks, then** return zero.*/static int unixCheckReservedLock(OsFile *id){ int r = 0; unixFile *pFile = (unixFile*)id; assert( pFile ); sqlite3OsEnterMutex(); /* Because pFile->pLock is shared across threads */ /* Check if a thread in this process holds such a lock */ if( pFile->pLock->locktype>SHARED_LOCK ){ r = 1; } /* Otherwise see if some other process holds it. */ if( !r ){ struct flock lock; lock.l_whence = SEEK_SET; lock.l_start = RESERVED_BYTE; lock.l_len = 1; lock.l_type = F_WRLCK; fcntl(pFile->h, F_GETLK, &lock); if( lock.l_type!=F_UNLCK ){ r = 1; } } sqlite3OsLeaveMutex(); OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r); return r;}/*** Lock the file with the lock specified by parameter locktype - one** of the following:**** (1) SHARED_LOCK** (2) RESERVED_LOCK** (3) PENDING_LOCK** (4) EXCLUSIVE_LOCK**** Sometimes when requesting one lock state, additional lock states** are inserted in between. The locking might fail on one of the later** transitions leaving the lock state different from what it started but** still short of its goal. The following chart shows the allowed** transitions and the inserted intermediate states:**** UNLOCKED -> SHARED** SHARED -> RESERVED** SHARED -> (PENDING) -> EXCLUSIVE** RESERVED -> (PENDING) -> EXCLUSIVE** PENDING -> EXCLUSIVE**** This routine will only increase a lock. Use the sqlite3OsUnlock()** routine to lower a locking level.*/static int unixLock(OsFile *id, int locktype){ /* The following describes the implementation of the various locks and ** lock transitions in terms of the POSIX advisory shared and exclusive ** lock primitives (called read-locks and write-locks below, to avoid ** confusion with SQLite lock names). The algorithms are complicated ** slightly in order to be compatible with windows systems simultaneously ** accessing the same database file, in case that is ever required. ** ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved ** byte', each single bytes at well known offsets, and the 'shared byte ** range', a range of 510 bytes at a well known offset. ** ** To obtain a SHARED lock, a read-lock is obtained on the 'pending ** byte'. If this is successful, a random byte from the 'shared byte ** range' is read-locked and the lock on the 'pending byte' released. ** ** A process may only obtain a RESERVED lock after it has a SHARED lock. ** A RESERVED lock is implemented by grabbing a write-lock on the ** 'reserved byte'. ** ** A process may only obtain a PENDING lock after it has obtained a ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock ** on the 'pending byte'. This ensures that no new SHARED locks can be ** obtained, but existing SHARED locks are allowed to persist. A process ** does not have to obtain a RESERVED lock on the way to a PENDING lock. ** This property is used by the algorithm for rolling back a journal file ** after a crash. ** ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is ** implemented by obtaining a write-lock on the entire 'shared byte ** range'. Since all other locks require a read-lock on one of the bytes ** within this range, this ensures that no other locks are held on the ** database. ** ** The reason a single byte cannot be used instead of the 'shared byte ** range' is that some versions of windows do not support read-locks. By ** locking a random byte from a range, concurrent SHARED locks may exist ** even if the locking primitive used is always a write-lock. */ int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; struct lockInfo *pLock = pFile->pLock; struct flock lock; int s; assert( pFile ); OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h, locktypeName(locktype), locktypeName(pFile->locktype), locktypeName(pLock->locktype), pLock->cnt , getpid()); /* If there is already a lock of this type or more restrictive on the ** OsFile, do nothing. Don't use the end_lock: exit path, as ** sqlite3OsEnterMutex() hasn't been called yet. */ if( pFile->locktype>=locktype ){ OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, locktypeName(locktype)); return SQLITE_OK; } /* Make sure the locking sequence is correct */ assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); assert( locktype!=PENDING_LOCK ); assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); /* This mutex is needed because pFile->pLock is shared across threads */ sqlite3OsEnterMutex(); /* Make sure the current thread owns the pFile. */ rc = transferOwnership(pFile); if( rc!=SQLITE_OK ){ sqlite3OsLeaveMutex(); return rc; } pLock = pFile->pLock; /* If some thread using this PID has a lock via a different OsFile* ** handle that precludes the requested lock, return BUSY. */ if( (pFile->locktype!=pLock->locktype && (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK)) ){ rc = SQLITE_BUSY; goto end_lock; } /* If a SHARED lock is requested, and some thread using this PID already ** has a SHARED or RESERVED lock, then increment reference counts and ** return SQLITE_OK. */ if( locktype==SHARED_LOCK && (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){ assert( locktype==SHARED_LOCK ); assert( pFile->locktype==0 ); assert( pLock->cnt>0 ); pFile->locktype = SHARED_LOCK; pLock->cnt++; pFile->pOpen->nLock++; goto end_lock; } lock.l_len = 1L; lock.l_whence = SEEK_SET; /* A PENDING lock is needed before acquiring a SHARED lock and before ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will ** be released. */ if( locktype==SHARED_LOCK || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK) ){ lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK); lock.l_start = PENDING_BYTE; s = fcntl(pFile->h, F_SETLK, &lock); if( s==(-1) ){ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; goto end_lock; } } /* If control gets to this point, then actually go ahead and make ** operating system calls for the specified lock. */ if( locktype==SHARED_LOCK ){ assert( pLock->cnt==0 ); assert( pLock->locktype==0 ); /* Now get the read-lock */ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; s = fcntl(pFile->h, F_SETLK, &lock); /* Drop the temporary PENDING lock */ lock.l_start = PENDING_BYTE; lock.l_len = 1L; lock.l_type = F_UNLCK; if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ goto end_lock; } if( s==(-1) ){ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; }else{ pFile->locktype = SHARED_LOCK; pFile->pOpen->nLock++; pLock->cnt = 1; } }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){ /* We are trying for an exclusive lock but another thread in this ** same process is still holding a shared lock. */ rc = SQLITE_BUSY; }else{ /* The request was for a RESERVED or EXCLUSIVE lock. It is ** assumed that there is a SHARED or greater lock on the file ** already. */ assert( 0!=pFile->locktype ); lock.l_type = F_WRLCK; switch( locktype ){ case RESERVED_LOCK: lock.l_start = RESERVED_BYTE; break; case EXCLUSIVE_LOCK: lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; break; default: assert(0); } s = fcntl(pFile->h, F_SETLK, &lock); if( s==(-1) ){ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; } } if( rc==SQLITE_OK ){ pFile->locktype = locktype; pLock->locktype = locktype; }else if( locktype==EXCLUSIVE_LOCK ){ pFile->locktype = PENDING_LOCK; pLock->locktype = PENDING_LOCK; }end_lock: sqlite3OsLeaveMutex(); OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), rc==SQLITE_OK ? "ok" : "failed"); return rc;}/*** Lower the locking level on file descriptor pFile to locktype. locktype** must be either NO_LOCK or SHARED_LOCK.**** If the locking level of the file descriptor is already at or below** the requested locking level, this routine is a no-op.*/static int unixUnlock(OsFile *id, int locktype){ struct lockInfo *pLock; struct flock lock; int rc = SQLITE_OK; unixFile *pFile = (unixFile*)id; assert( pFile ); OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype, pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid()); assert( locktype<=SHARED_LOCK ); if( pFile->locktype<=locktype ){ return SQLITE_OK; } if( CHECK_THREADID(pFile) ){ return SQLITE_MISUSE; } sqlite3OsEnterMutex(); pLock = pFile->pLock; assert( pLock->cnt!=0 ); if( pFile->locktype>SHARED_LOCK ){ assert( pLock->locktype==pFile->locktype ); if( locktype==SHARED_LOCK ){ lock.l_type = F_RDLCK; lock.l_whence = SEEK_SET; lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; if( fcntl(pFile->h, F_SETLK, &lock)==(-1) ){ /* This should never happen */ rc = SQLITE_IOERR_RDLOCK; } } lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = PENDING_BYTE; lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); if( fcntl(pFile->h, F_SETLK, &lock)!=(-1) ){ pLock->locktype = SHARED_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ } } if( locktype==NO_LOCK ){ struct openCnt *pOpen; /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ pLock->cnt--; if( pLock->cnt==0 ){ lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = lock.l_len = 0L; if( fcntl(pFile->h, F_SETLK, &lock)!=(-1) ){ pLock->locktype = NO_LOCK; }else{ rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ } } /* Decrement the count of locks against this same file. When the ** count reaches zero, close any other file descriptors whose close ** was deferred because of outstanding locks. */ pOpen = pFile->pOpen; pOpen->nLock--; assert( pOpen->nLock>=0 ); if( pOpen->nLock==0 && pOpen->nPending>0 ){ int i; for(i=0; i<pOpen->nPending; i++){ close(pOpen->aPending[i]); } free(pOpen->aPending); pOpen->nPending = 0; pOpen->aPending = 0; } } sqlite3OsLeaveMutex(); pFile->locktype = locktype; return rc;}/*** Close a file.*/static int unixClose(OsFile **pId){ unixFile *id = (unixFile*)*pId; if( !id ) return SQLITE_OK; unixUnlock(*pId, NO_LOCK); if( id->dirfd>=0 ) close(id->dirfd); id->dirfd = -1; sqlite3OsEnterMutex(); if( id->pOpen->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pOpen->aPending. It will be automatically closed when ** the last lock is cleared. */ int *aNew; struct openCnt *pOpen = id->pOpen; aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) ); if( aNew==0 ){ /* If a malloc fails, just leak the file descriptor */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -