📄 where.c
字号:
if( cost<lowestCost ){ lowestCost = cost; bestFlags = flags; } /* If the pSrc table is the right table of a LEFT JOIN then we may not ** use an index to satisfy IS NULL constraints on that table. This is ** because columns might end up being NULL if the table does not match - ** a circumstance which the index cannot help us discover. Ticket #2177. */ if( (pSrc->jointype & JT_LEFT)!=0 ){ eqTermMask = WO_EQ|WO_IN; }else{ eqTermMask = WO_EQ|WO_IN|WO_ISNULL; } /* Look at each index. */ for(; pProbe; pProbe=pProbe->pNext){ int i; /* Loop counter */ double inMultiplier = 1; WHERETRACE(("... index %s:\n", pProbe->zName)); /* Count the number of columns in the index that are satisfied ** by x=EXPR constraints or x IN (...) constraints. */ flags = 0; for(i=0; i<pProbe->nColumn; i++){ int j = pProbe->aiColumn[i]; pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); if( pTerm==0 ) break; flags |= WHERE_COLUMN_EQ; if( pTerm->eOperator & WO_IN ){ Expr *pExpr = pTerm->pExpr; flags |= WHERE_COLUMN_IN; if( pExpr->pSelect!=0 ){ inMultiplier *= 25; }else if( pExpr->pList!=0 ){ inMultiplier *= pExpr->pList->nExpr + 1; } } } cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); nEq = i; if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 && nEq==pProbe->nColumn ){ flags |= WHERE_UNIQUE; } WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); /* Look for range constraints */ if( nEq<pProbe->nColumn ){ int j = pProbe->aiColumn[nEq]; pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); if( pTerm ){ flags |= WHERE_COLUMN_RANGE; if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ flags |= WHERE_TOP_LIMIT; cost /= 3; } if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ flags |= WHERE_BTM_LIMIT; cost /= 3; } WHERETRACE(("...... range reduces cost to %.9g\n", cost)); } } /* Add the additional cost of sorting if that is a factor. */ if( pOrderBy ){ if( (flags & WHERE_COLUMN_IN)==0 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ if( flags==0 ){ flags = WHERE_COLUMN_RANGE; } flags |= WHERE_ORDERBY; if( rev ){ flags |= WHERE_REVERSE; } }else{ cost += cost*estLog(cost); WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); } } /* Check to see if we can get away with using just the index without ** ever reading the table. If that is the case, then halve the ** cost of this index. */ if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ Bitmask m = pSrc->colUsed; int j; for(j=0; j<pProbe->nColumn; j++){ int x = pProbe->aiColumn[j]; if( x<BMS-1 ){ m &= ~(((Bitmask)1)<<x); } } if( m==0 ){ flags |= WHERE_IDX_ONLY; cost /= 2; WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); } } /* If this index has achieved the lowest cost so far, then use it. */ if( cost < lowestCost ){ bestIdx = pProbe; lowestCost = cost; assert( flags!=0 ); bestFlags = flags; bestNEq = nEq; } } /* Report the best result */ *ppIndex = bestIdx; WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); *pFlags = bestFlags | eqTermMask; *pnEq = bestNEq; return lowestCost;}/*** Disable a term in the WHERE clause. Except, do not disable the term** if it controls a LEFT OUTER JOIN and it did not originate in the ON** or USING clause of that join.**** Consider the term t2.z='ok' in the following queries:**** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'**** The t2.z='ok' is disabled in the in (2) because it originates** in the ON clause. The term is disabled in (3) because it is not part** of a LEFT OUTER JOIN. In (1), the term is not disabled.**** Disabling a term causes that term to not be tested in the inner loop** of the join. Disabling is an optimization. When terms are satisfied** by indices, we disable them to prevent redundant tests in the inner** loop. We would get the correct results if nothing were ever disabled,** but joins might run a little slower. The trick is to disable as much** as we can without disabling too much. If we disabled in (1), we'd get** the wrong answer. See ticket #813.*/static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ if( pTerm && (pTerm->flags & TERM_CODED)==0 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) ){ pTerm->flags |= TERM_CODED; if( pTerm->iParent>=0 ){ WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; if( (--pOther->nChild)==0 ){ disableTerm(pLevel, pOther); } } }}/*** Generate code that builds a probe for an index.**** There should be nColumn values on the stack. The index** to be probed is pIdx. Pop the values from the stack and** replace them all with a single record that is the index** problem.*/static void buildIndexProbe( Vdbe *v, /* Generate code into this VM */ int nColumn, /* The number of columns to check for NULL */ Index *pIdx /* Index that we will be searching */){ sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); sqlite3IndexAffinityStr(v, pIdx);}/*** Generate code for a single equality term of the WHERE clause. An equality** term can be either X=expr or X IN (...). pTerm is the term to be ** coded.**** The current value for the constraint is left on the top of the stack.**** For a constraint of the form X=expr, the expression is evaluated and its** result is left on the stack. For constraints of the form X IN (...)** this routine sets up a loop that will iterate over all values of X.*/static void codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel /* When level of the FROM clause we are working on */){ Expr *pX = pTerm->pExpr; Vdbe *v = pParse->pVdbe; if( pX->op==TK_EQ ){ sqlite3ExprCode(pParse, pX->pRight); }else if( pX->op==TK_ISNULL ){ sqlite3VdbeAddOp(v, OP_Null, 0, 0);#ifndef SQLITE_OMIT_SUBQUERY }else{ int iTab; struct InLoop *pIn; assert( pX->op==TK_IN ); sqlite3CodeSubselect(pParse, pX); iTab = pX->iTable; sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); if( pLevel->nIn==0 ){ pLevel->nxt = sqlite3VdbeMakeLabel(v); } pLevel->nIn++; pLevel->aInLoop = sqliteReallocOrFree(pLevel->aInLoop, sizeof(pLevel->aInLoop[0])*pLevel->nIn); pIn = pLevel->aInLoop; if( pIn ){ pIn += pLevel->nIn - 1; pIn->iCur = iTab; pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); sqlite3VdbeAddOp(v, OP_IsNull, -1, 0); }else{ pLevel->nIn = 0; }#endif } disableTerm(pLevel, pTerm);}/*** Generate code that will evaluate all == and IN constraints for an** index. The values for all constraints are left on the stack.**** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10** The index has as many as three equality constraints, but in this** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate** a==5 and b IN (1,2,3). The current values for a and b will be left** on the stack - a is the deepest and b the shallowest.**** In the example above nEq==2. But this subroutine works for any value** of nEq including 0. If nEq==0, this routine is nearly a no-op.** The only thing it does is allocate the pLevel->iMem memory cell.**** This routine always allocates at least one memory cell and puts** the address of that memory cell in pLevel->iMem. The code that** calls this routine will use pLevel->iMem to store the termination** key value of the loop. If one or more IN operators appear, then** this routine allocates an additional nEq memory cells for internal** use.*/static void codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady /* Which parts of FROM have not yet been coded */){ int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ int termsInMem = 0; /* If true, store value in mem[] cells */ Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ int iCur = pLevel->iTabCur; /* The cursor of the table */ WhereTerm *pTerm; /* A single constraint term */ int j; /* Loop counter */ /* Figure out how many memory cells we will need then allocate them. ** We always need at least one used to store the loop terminator ** value. If there are IN operators we'll need one for each == or ** IN constraint. */ pLevel->iMem = pParse->nMem++; if( pLevel->flags & WHERE_COLUMN_IN ){ pParse->nMem += pLevel->nEq; termsInMem = 1; } /* Evaluate the equality constraints */ assert( pIdx->nColumn>=nEq ); for(j=0; j<nEq; j++){ int k = pIdx->aiColumn[j]; pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); if( pTerm==0 ) break; assert( (pTerm->flags & TERM_CODED)==0 ); codeEqualityTerm(pParse, pTerm, pLevel); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk); } if( termsInMem ){ sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); } } /* Make sure all the constraint values are on the top of the stack */ if( termsInMem ){ for(j=0; j<nEq; j++){ sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); } }}#if defined(SQLITE_TEST)/*** The following variable holds a text description of query plan generated** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin** overwrites the previous. This information is used for testing and** analysis only.*/char sqlite3_query_plan[BMS*2*40]; /* Text of the join */static int nQPlan = 0; /* Next free slow in _query_plan[] */#endif /* SQLITE_TEST *//*** Free a WhereInfo structure*/static void whereInfoFree(WhereInfo *pWInfo){ if( pWInfo ){ int i; for(i=0; i<pWInfo->nLevel; i++){ sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; if( pInfo ){ if( pInfo->needToFreeIdxStr ){ /* Coverage: Don't think this can be reached. By the time this ** function is called, the index-strings have been passed ** to the vdbe layer for deletion. */ sqlite3_free(pInfo->idxStr); } sqliteFree(pInfo); } } sqliteFree(pWInfo); }}/*** Generate the beginning of the loop used for WHERE clause processing.** The return value is a pointer to an opaque structure that contains** information needed to terminate the loop. Later, the calling routine** should invoke sqlite3WhereEnd() with the return value of this function** in order to complete the WHERE clause processing.**** If an error occurs, this routine returns NULL.**** The basic idea is to do a nested loop, one loop for each table in** the FROM clause of a select. (INSERT and UPDATE statements are the** same as a SELECT with only a single table in the FROM clause.) For** example, if the SQL is this:**** SELECT * FROM t1, t2, t3 WHERE ...;**** Then the code generated is conceptually like the following:**** foreach row1 in t1 do \ Code generated** foreach row2 in t2 do |-- by sqlite3WhereBegin()** foreach row3 in t3 do /** ...** end \ Code generated** end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -