📄 est2genome.txt
字号:
XXCC IMPORTANT: This sequence is not the entire insert of cloneCC NFG9. It may be shorter because we only sequence overlappingCC sections once, or longer because we arrange for a smallCC overlap between neighbouring submissions.XXCC The true left end of clone NFG9 is at 1 in this sequence.CC The true left end of clone RA36 is at 25872.XXCC NFG9 is from a 280kb clone contig extending from the telomere of 16p.CC Higgs D.R., Flint J. unpublished. MRC Molecular Haematology Unit,CC Institute of Molecular Medicine, Oxford.CC NFG9 is from the library CV007K. Choo et al.,(1986) Gene 46. 277-286.XXFH Key Location/QualifiersFHFT source 1..33760FT /chromosome="16"FT /db_xref="taxon:9606"FT /organism="Homo sapiens"FT /map="16p13.3"FT /clone_lib="CV007K" [Part of this file has been deleted for brevity] gagacagcag agtgctcagc tcatgaagga ggcaccagcc gccatgcctc tacatccagg 30840 tctcctgggg ttcccacctc cacaaaaacc cccactgcta ggagtgcagg caggagggga 30900 cctgagaacc gacagttata ggtcctgcgg gtgggcagtg ctgggtgttc tggtctgccc 30960 cacccctgtg tgcctagatc cccatctggg cctcaagtgg gtgggattcc aaaggaagag 31020 ccggagtagg cgtggggagg ggcaggccca ggctggacaa agagtctggc cagggagcgg 31080 cacattgccc tcccagagac agtggctcag tgtccaggcc ttccccaggc gcacagtggg 31140 ctcttgttcc cagaaagccc ctcgggggga tccaaacagt gtctccccca ccccgctgac 31200 ccctcagtgt atggggaaac cgtggcccac ggaaggcctc actgcctggg gtcacacagc 31260 atctgagtca ctgcagcagc ctcacagctg ccagcccagg cccagcccca tcaggagaca 31320 cccaaagcca cagtgcatcc caggaccagc tgggggggct gcgggcagga ctctcgatga 31380 ggctgaggga cgaggagggt caagggagcc actggcgcca tgcatgctga cgtcccctct 31440 ggctgcctgc agagcctggt gtggaagggc tgagtggggg atggtggaga gtcctgttaa 31500 ctcaggtttc tgctctgggg atgtctgggc acccatcaag ctggccgcgt gcacaggtgc 31560 agggagagcc agaaagcagg agccgatgca gggaggccac tggggacagc ccaggctgat 31620 gcttgggccc catgtgtctc caccacctac aaccctaagc aagcctcagc tttcccatct 31680 ggaaatcagg ggtcacagca gtgcctggca cagtagcagc ggctgactcc atcacagggt 31740 ggtgtagcct gtgggtactt ggcactctct gaggggcagg agctgggggg tgaaaggacc 31800 ctagagcata tgcaacaaga gggcagccct ggggacacct ggggacagaa ccctccaaag 31860 gtgtcgagtt tgggaagaga ctagagagaa gctctggcca gtccaggcat agacagtggc 31920 cacagccagt ggagagctgc atcctcaggt gtgagcagca accacctctg tactcaggcc 31980 tgccctgcac actcacagga ccatgctggc agggacaact ggcggcggag ttgactgcca 32040 accccggggc cagaaccatc aagcctgggc tctgctccgc ccaaggaact gcctgctgcc 32100 gaggtcagct ggagcaaggg gcctcacccc gggacacctt cccagacgtg tcctcagctc 32160 acatgagcct catcccaggg ggatgtggct cctccagcat ccccacccac acgctgctct 32220 ctgaccctca gtcttctgtt tgactcctaa tctgaagctc aatcctagat ctcccttgag 32280 aagggggtca ccagctgtct ggcagcccag cctccaggtc ttctggatta atgaagggaa 32340 agtcacctgg cctctctgcc ttgtctatta atggcatcat gctgagaatg atatttgcta 32400 ggccctttgc aaaccccaaa gtgctcttca accctcccag tgaagcctct tcttttctgt 32460 ggaagaaatg aggttcaggg tggagcaggg caggcctgag acctttgcag ggttctctcc 32520 aggtccccag caggacagac tggcaccctg cctcccctca tcaccctaga caaggagaca 32580 gaacaagagg ttccctgcta caggccatct gtgagggaag ccgccctagg gcctgtagac 32640 acaggaatcc ctgaggacct gacctgtgag ggtagtgcac aaaggggcca gcacttggca 32700 ggaggggggg gggcactgcc ccaaggctca gctagcaaat gtggcacagg ggtcaccaga 32760 gctaaacccc tgactcagtt gggtctgaca ggggctgaca tggcagacac acccaggaat 32820 caggggacac caagtgcagc tcagggcacc tgtccaggcc acacagtcag aaaggggatg 32880 gcagcaagga cttagctaca ctagattctg ggggtaaact gcctggtatg ctggtcactg 32940 ctagtcccca gtctggagtc tagctgggtc tcaggagtta ggcgaaaaca ccctccccag 33000 gctgcaggtg ggagaggccc acatcccctg cacacgtctg gccagaggac agatgggcag 33060 cccagtcacc agtcagagcc ctccagaggt gtccctgact gaccctacac acatgcaccc 33120 aggtgcccag gcacccttgg gctcagcaac cctgcaaccc cctcccagga cccaccagaa 33180 gcaggatagg actagagagg ccacaggagg gaaaccaagt cagagcagaa atggcttcgg 33240 tcctcagcag cctggctcag cttcctcaaa ccagatcctg actgatcaca ctggtctgtc 33300 taacccctgg gaggggtcct ctgtatccat cttacagata aggaaactga ggctcagaga 33360 agcccatcac tgcctaaggt cccagggcct ataagggagc tcaaagcctt gggccaggtc 33420 tgcccaggag ctgcagtgga agggaccctg tctgcagacc cccagaagac aaggcagacc 33480 acctgggttc ttcagccttg tggctgtgga cggctgtcag acccttctaa gaccccttgc 33540 cacctgctcc atcaggggca tctcagttga agaaggaagg actcaccccc aaaatcgtcc 33600 aactcagaaa aaaaggcaga agccaaggaa tccaatcact gggcaaaatg tgatcctggc 33660 acagacactg aggtggggga actggagccg gtgtggcgga ggccctcaca gccaagagca 33720 actgggggtg ccctgggcag ggactgtagc tgggaagatc 33760//Output file format Output files for usage example File: hs989235.est2genomeNote Best alignment is between forward est and forward genome, but splice sites imply REVERSED GENEExon 163 91.8 25685 25874 HSNFG9 1 193 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.-Intron -20 0.0 25875 26278 HSNFG9Exon 207 98.1 26279 26492 HSNFG9 194 407 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.-Intron -20 0.0 26493 27390 HSNFG9Exon 63 86.4 27391 27476 HSNFG9 408 494 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Span 393 93.6 25685 27476 HSNFG9 1 494 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 14 83.3 25685 25702 HSNFG9 1 18 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 28 85.7 25703 25737 HSNFG9 20 54 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 4 100.0 25738 25741 HSNFG9 56 59 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 13 100.0 25742 25754 HSNFG9 61 73 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 4 100.0 25756 25759 HSNFG9 74 77 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 110 97.4 25760 25874 HSNFG9 79 193 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 37 100.0 26279 26315 HSNFG9 194 230 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 162 98.8 26317 26480 HSNFG9 231 394 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 12 100.0 26481 26492 HSNFG9 396 407 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 16 100.0 27391 27406 HSNFG9 408 423 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 10 91.7 27407 27418 HSNFG9 425 436 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 19 95.2 27419 27439 HSNFG9 438 458 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence.Segment 24 80.6 27441 27476 HSNFG9 459 494 HS989235 yo13c02.s1 Soares adult brain N2b5HB55Y Homo sapiens cDNA clone IMAGE:177794 3', mRNAsequence. MSP type segments There are four types of segment, 1. each gapped Exon 2. each Intron (marked with a ? if it does not start GT and end AG) 3. the complete alignment Span 4. individual ungapped matching Segments. The score for Exon segments is the alignment score excluding flanking intron penalties. The Span score is the total including the intron costs. The coordinates of the genomic sequence always refer to the positive strand, but are swapped if the est has been reversed. The splice direction of Introns are indicated as +Intron (forward, splice sites GT/AG) or -Intron (reverse, splice sites CT/AC), or ?Intron (unknown direction). Segment entries give the alignment as a series of ungapped matching segments. Full alignment You get the alignment if the -align switch is set. The alignment includes the first and last 5 bases of each intron, together with the intron width. The direction of splicing is indicated by >>>> (forward) or <<<< (reverse) or ???? (unknown)Data files NoneNotes est2genome uses a linear-space dynamic-programming algorithm. It has the following parameters:parameter default descriptionmatch 1 score for matching two basesmismatch 1 cost for mismatching two basesgap_penalty 2 cost for deleting a single base in either sequence, excluding intronsintron_penalty 40 cost for an intron, independent of length.splice_penalty 20 cost for an intron, independent of length and starting/ending on donor-acceptor sites.space 10 Space threshold (in megabytes) for linear-space recursion. If the product of the two sequence lengths divided by 4 exceeds this then a divide-and-conquer strategy is used to control the memory requirements. In this way very long sequences can be aligned. If you have a machine with plenty of memory you can raise this parameter (but do not exceed the machine's physical RAM) However, normally you should not need to change this parameter. There is no gap initiation cost for short gaps, just a penalty proportional to the length of the gap. Thus the cost of inserting a gap of length L in the EST is L*gap_penalty and the cost in the genome ismin { L*gap_penalty, intron_penalty } ormin { L*gap_penalty, splice_penalty } if the gap starts with GT and ends with AG (or CT/AC if splice direction reversed) Introns are not allowed in the EST. The difference between the intron_penalty and splice_penalty allows for some slack in marking the intron end-points. It is often the case that the best intron boundaries, from the point of view of minimising mismatches, will not coincide exactly with the splice consensus, so provided the difference between the intron/splice penalties outweighs the extra mismatch/indel costs the alignment will respect the proper boundaries. If the alignment still prefers boundaries which don't start and end with the splice consensus then this may indicate errors in the sequences. The default parameters work well, except for very short exons (length less than the splice_penalty, approx) which may be skipped. The intron penalties should not be set to less that the maximum expected random match between the sequences (typically 10-15 bp) in order to avoid spurious matches. The algorithm has the following steps: 1. A first-pass Smith-Waterman scan is done to locate the score, start and end of the maximal scoring segment (including introns of course). No other alignment information is retained. 2. Subsequences corresponding to the maximal-scoring segments are extracted. If the product of these subsequences' lengths is less than the area parameter then the segments are re-aligned using the Needleman-Wunsch algorithm, which in this instance will give the same result as the Smith-Waterman since they are guaranteed to align end-to-end. 3. If the product of lengths exceeds the area threshold then the alignment is recursively broken down by splitting the EST in half and finding the genome position which aligns with the EST mid-point. The problem then reduces to aligning the left-hand and right-hand portions of the sequences separately and merging the result. The worst-case run-time for the algorithm is about 3 times as long as would be taken to align using a quadratic-space program. In practice the maximal-scoring segment is often much shorter than the full genome length so the program runs only about 1.5 times slower.References 1. Mott R. (1997) EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Comput. Applic. 13:477-478 2. Huang X (1994) On global sequence alignment. Comput. Applic. Biosci. 10:227-235. 3. Myers, EW and Miller, W (1988) Optimal alignments in linear space. Comput. Applic. Biosci. 4:11-17 4. Smith, TE and Waterman, MS (1981) Identification of common molecular subsequences. J. Mol. Biol. 147:195-197Warnings None.Diagnostic Error Messages None.Exit status It returns 0 unless an error occurs.Known bugs None.See also Program name Description needle Needleman-Wunsch global alignment stretcher Finds the best global alignment between two sequencesAuthor(s) This application was modified for inclusion in EMBOSS by Peter Rice (pmr
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -