📄 fullpathcov.m
字号:
function [vars,rhobreaks,res]=FullPathCov(S)% Given covariance matrix, compute full sparse PCA path% Input: % S: covariance matrix with decreasing diagonal% Output: % vars: vector of variances for each target cardinality% rhobreaks: the coresponding rho penalties% res: each column contains the corresponding subset of variablesds=diag(S);if any(ds(1:end-1)-ds(2:end)<0) disp('Error in FullPathCov input: diagonal of input matrix should be decreasing'); isopt=0;rho=NaN;return;endn=size(S,1);A=chol(S);subset=[1];subres=[subset';zeros(n-length(subset),1)];res=[];rhobreaks=[sum(A(:,1).^2)];sol=[];vars=[];% Loop through variablesfor i=1:n % Compute solution at current subset [v,mv]=maxeig(S(subset,subset)); vsol=zeros(n,1);vsol(subset)=v; sol=[sol,vsol];vars=[vars,mv]; % Compute x at current subset x=A(:,subset)*v;x=x/norm(x); res=[res,[subset';zeros(n-length(subset),1)]]; % Compute next rho breakpoint set=1:n;set(subset)=[]; vals=(x'*A(:,set)).^2; [rhomax,vpos]=max(vals); rhobreaks=[rhobreaks;rhomax]; subset=[subset,set(vpos)];end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -