📄 plas.for
字号:
**********************************
* Program elas_plas.f
* Simulates the NON-LINEAR RESPONSE of a SDOF using
* an ELASTO-PLASTIC hysteresis loop to model the
* Spring Resistance Function, Rm
**********************************
* The program uses the Newmark-B integration scheme
* to evaluate the response at each discrete time step
**********************************
* Program Author : Sanjoy Chakraborty
**********************************
program resp_nonlin
implicit real *8 (a-h,o-z)
real *8 k,m
character *80 header
dimension x(50000),x1(50000),x2(50000),ft(20),tt(20),
1 p(50000)
write(*,10)
10 format(//,' Elasto-Plastic Response of a SDOF',//,
1 ' Program Author : Sanjoy Chakraborty, Auburn University',//)
call input(k,m,c,rm,tt,ft,nfor,tend,h,header)
call inter_f(nfor,tt,ft,p,h,tend)
call resp(x,x1,x2,m,c,k,h,tend,rm,p,ic)
call output(m,c,k,rm,tt,ft,nfor,tend,h,ic,x,x1,x2,header)
stop
end
**********************************
subroutine input(k,m,c,rm,tt,ft,nfor,tend,h,header)
**********************************
* Used to input the system parameters and forcing
* function from the input file fin
**********************************
implicit real *8 (a-h,o-z)
real *8 k,m
character *22 fin
character *80 header
dimension tt(20),ft(20)
write(*,'(//a)')' Input file :'
read(*,'(a)')fin
open(1,file=fin,status='old')
read(1,'(a80)')header
read(1,*)k,m,c,rm,tend,h
read(1,*)nfor
do 110 i=1,nfor
read(1,*)tt(i),ft(i)
110 continue
close(1)
return
end
**********************************
subroutine inter_f(nf,tt,ft,p,h,tend)
**********************************
* Used to interpolate for the forcing function values
* at the times at which the solution is sought
**********************************
implicit real *8 (a-h,o-z)
dimension tt(20),ft(20),p(50000)
ic=1
do 1001 t=0.,tend,h
do 1002 i=1,nf-1
if(t.ge.tt(i).and.t.le.tt(i+1))then
p(ic)=ft(i)+(ft(i+1)-ft(i))*(t-tt(i))/(tt(i+1)-tt(i))
goto 1003
endif
1002 continue
1003 ic=ic+1
1001 continue
return
end
**********************************
subroutine resp(x,x1,x2,m,c,k,h,tend,rm,p,ic)
**********************************
* Computes the system response (displacement, velocity
* and acceleration) at each time step
**********************************
* The loop (=i) parameter is used to determine the
* exact location of the system on the hysteretic loop
* describing the resistance function Rm
* loop =1 --> elastic loading stage
* loop =2 --> plastic loading stage
* loop =3 --> elastic rebound stage
* loop =4 --> plastic rebound stage
* xmax, xmin, and xlim are parameters used to control
* the physical route of the resistance function along
* the hysteretic loop
* xmax = max. +ve plastic deformation (loop=2)
* xmin = max. -ve plastic deformation (loop=4)
**********************************
implicit real *8 (a-h,o-z)
real *8 k,m,kelas,kplas
dimension x(50000),x1(50000),x2(50000),p(50000)
x(1)=0.
x1(1)=0.
x2(1)=p(1)/m
xel=rm/k
a1=3./h
a2=6./h
a3=h/2.
a4=6./h**2
kelas=k+a4*m+a1*c
kplas=a4*m+a1*c
xlim=xel
xmin=-xel
loop=1
ic=2
do 501 t=h,tend,h
if(loop.eq.1)then
call res1(kelas,p,x,x1,x2,m,c,ic,a2,a3,a1)
r=-rm-(xmin-x(ic))*k
x2(ic)=(p(ic)-c*x1(ic)-r)/m
if(x(ic).ge.xlim)then
loop=2
endif
ic=ic+1
goto 501
elseif(loop.eq.2)then
call res1(kplas,p,x,x1,x2,m,c,ic,a2,a3,a1)
r=rm
x2(ic)=(p(ic)-c*x1(ic)-r)/m
if(x1(ic).le.0.)then
loop=3
xmax=x(ic)
xlim=x(ic)-2.*xel
endif
ic=ic+1
goto 501
elseif(loop.eq.3)then
call res1(kelas,p,x,x1,x2,m,c,ic,a2,a3,a1)
r=rm-(xmax-x(ic))*k
x2(ic)=(p(ic)-c*x1(ic)-r)/m
if(x(ic).le.xlim)then
loop=4
endif
ic=ic+1
goto 501
elseif(loop.eq.4)then
call res1(kplas,p,x,x1,x2,m,c,ic,a2,a3,a1)
r=-rm
x2(ic)=(p(ic)-c*x1(ic)-r)/m
if(x1(ic).ge.0.)then
loop=1
xlim=x(ic)+2.*xel
xmin=x(ic)
endif
ic=ic+1
goto 501
endif
501 continue
return
end
**********************************
subroutine res1(k,p,x,x1,x2,m,c,ic,a2,a3,a1)
**********************************
* Used to compute displacement and velocity
* at any time step
**********************************
implicit real *8 (a-h,o-z)
real *8 k,m
dimension p(50000),x(50000),x1(50000),x2(50000)
dps=p(ic)-p(ic-1)+x1(ic-1)*(a2*m+3.*c)+x2(ic-1)*
1 (3.*m+a3*c)
dx=dps/k
dx1=a1*dx-3.*x1(ic-1)-a3*x2(ic-1)
x(ic)=x(ic-1)+dx
x1(ic)=x1(ic-1)+dx1
return
end
**********************************
subroutine output(m,c,k,rm,tt,ft,nfor,tend,h,ic,
1 x,x1,x2,header)
**********************************
* Outputs the computed results to 2 files :
* 'fout' -> system parameters and maximum response values
* x.out -> time vs. displacement data
**********************************
implicit real *8 (a-h,o-z)
real *8 m,k
character *22 fout
character *80 header
dimension tt(20),ft(20),x(50000),x1(50000),x2(50000)
write(*,'(//a)')' Output file :'
read(*,'(a)')fout
open(2,file=fout,status='unknown')
open(3,file='x.out',status='unknown')
do 601 i=1,ic-1
t=float(i-1)*h
write(3,609)t,x(i),x1(i),x2(i)
609 format(4e16.8)
601 continue
xm=x(1)
txm=0.
x1m=x1(1)
tx1m=0.
x2m=x2(1)
tx2m=0.
do 605 i=2,ic-1
if(abs(x(i)).gt.abs(xm))then
xm=x(i)
txm=float(i-1)*h
endif
if(abs(x1(i)).gt.abs(x1m))then
x1m=x1(i)
tx1m=float(i-1)*h
endif
if(abs(x2(i)).gt.abs(x2m))then
x2m=x2(i)
tx2m=float(i-1)*h
endif
605 continue
write(2,603)header,m,c,k,rm,h,tend
603 format(/,10x,
1 ' NON-LINEAR / ELASTO-PLASTIC RESPONSE OF A SDOF',/,10x,
1 ' Direct Integration using Newmark-B Method',/,10x,
1 ' Program Author : Sanjoy Chakraborty',//,
1 //,a80,//,' Mass :',e16.6,/,
2 ' Damping :',e16.6,/,
3 ' Stiffness :',e16.6,/,
4 ' Rm :',e16.6,/,
5 ' Time step :',e16.6,//,
5 ' Response was calculated from : 0.0 to ',f5.2,' secs')
write(2,604)xm,txm,x1m,tx1m,x2m,tx2m
604 format(//,' Values of Maximum response :',//,
1 ' Maxm. Displacement =',e15.6,' at t=',e14.6,/,
1 ' Maxm. Velocity =',e15.6,' at t=',e14.6,/,
1 ' Maxm. Acceleration =',e15.6,' at t=',e14.6)
return
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -