⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rnsop.c

📁 IML package provides efficient routines to solve nonsingular systems of linear equations, certifie
💻 C
📖 第 1 页 / 共 2 页
字号:
/* --------------------------------------------------------------------- * * -- Integer Matrix Library (IML) *    (C) Copyright 2004 All Rights Reserved * * -- IML routines -- Version 0.1.0 -- September, 2004 * * Author         : Zhuliang Chen * Contributor(s) : Arne Storjohann * University of Waterloo -- School of Computer Science * Waterloo, Ontario, N2L3G1 Canada * * --------------------------------------------------------------------- * * -- Copyright notice and Licensing terms: * *  Redistribution  and  use in  source and binary forms, with or without *  modification, are  permitted provided  that the following  conditions *  are met: * * 1. Redistributions  of  source  code  must retain the above copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce  the above copyright *    notice,  this list of conditions, and the  following disclaimer in *    the documentation and/or other materials provided with the distri- *    bution. * 3. The name of the University,  the IML group,  or the names of its *    contributors  may not be used to endorse or promote products deri- *    ved from this software without specific written permission. * * -- Disclaimer: * * THIS  SOFTWARE  IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,  BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,  INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO,  PROCUREMENT  OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEO- * RY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT  (IN- * CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */#include "RNSop.h"/* * * Calling Sequence: *   basisExt(len, n, p, basis, cmbasis, cumprod, bdcoeff, R, RE) * * Summary: *   Given a representation of a matrix/vector in some RNS, extend to compute  *   the representation in another positive integer * * Description: *   Let R be the representation of a matrix/vector M in a residue basis *   'basis', i.e., R[i] = mod(M, basis[i]) (i = 0..len-1). The function  *   computes the representation of M in another positive integer p,  *   RE = mod(M, p) using Garner's algorithm. 'mod' represents positive modular *   operation. * *   Let q be product of all elements in the RNS basis. Every entry m in M  *   satisfies -(q-1)/2 <= m <= (q-1)/2. That is, M has both positive entries *   and negative entries. * *   To avoid repeat computations, the function takes some precomputed  *   informations as input, which are listed below. * * Input:  *       len: long, dimension of RNS basis *         n: long, length of array RE *         p: FiniteField, modulus *     basis: 1-dim FiniteField array length len, RNS basis *   cmbasis: 1-dim FiniteField array length len, computed by function  *            combBasis, inverses of special combination of RNS basis *   cumprod: double, computed by function cumProd,  *            (-basis[0]*basis[1]*...*basis[len-1]) mod p  *   bdcoeff: 1-dim FiniteField array length len, computed by function repBound *         R: 1-dim Double array length n*len, representation of a len x n  *            matrix, R[i]=mod(M, basis[i]) (i=0..len-1) *  * Output: *   RE: 1-dim Double array length n, RE = mod(M, p), the space of RE  *       should be allocated before calling the function. * * Precondition: *   t <= 2^53-1, where t is the maximal intermidiate value arised in this  *   function, *   t = max(2*(basis[len-1]-1)^2, (p-1)^2+basis[len-1]-1) *            */voidbasisExt (const long len, const long n, const FiniteField p, \	  const FiniteField *basis, const FiniteField *cmbasis, \	  const double cumprod, const FiniteField *bdcoeff, Double **R, \	  Double *RE){  long i, j;  double temp;  Double **U;  const FiniteField *q, *qinv;  q = basis;  qinv = cmbasis;  /* if p = q[i] then just copy the corresponding column to RE */  for (i = 0; i < len; i++)     { if (p == q[i]) { cblas_dcopy(n, R[i], 1, RE, 1); return; } }  U = XMALLOC(Double *, len);  for (i = 0; i < len; i++) { U[i] = XMALLOC(Double, n); }  /* compute the coefficients of mix radix in positive representation by      inplacing modular matrix U */  cblas_dcopy(n, R[0], 1, U[0], 1);  for (i = 1; i < len; i++)    {      cblas_dcopy(n, U[i-1], 1, U[i], 1);      for (j = i-2; j >= 0; j--)	{	  catlas_daxpby(n, 1.0, U[j], 1, (double)(q[j] % q[i]), U[i], 1);	  Dmod((double)q[i], U[i], 1, n, n);	}      temp = (double)qinv[i]*(double)(q[i]-1);      temp = fmod(temp, (double)q[i]);      catlas_daxpby(n, (double)qinv[i], R[i], 1, temp, U[i], 1);      Dmod((double)q[i], U[i], 1, n, n);    }  /* compute mod(r, p) in positive representation and store into RE */  cblas_dcopy(n, U[len-1], 1, RE, 1);  Dmod((double)p, RE, 1, n, n);  for (i = len-2; i >= 0; i--)    {      catlas_daxpby(n, 1.0, U[i], 1, (double)(q[i] % p), RE, 1);      Dmod((double)p, RE, 1, n, n);    }  /* convert to symmetric representation */  for (i = 0; i < n; i++)    for (j = len-1; j >= 0; j--)      {	if (U[j][i] > bdcoeff[j])	  {	    RE[i] = fmod(RE[i]+cumprod, (double)p);	    break;	  }	else if (U[j][i] < bdcoeff[j]) { break; }      }  for (i = 0; i < len; i++) { XFREE(U[i]); } { XFREE(U); }  return;}/* * * Calling Sequence: *   basisExtPos(len, n, p, basis, cmbasis, R, RE) * * Summary: *   Given a representation of a non-negative matrix/vector in some RNS,  *   extend to compute the representation in another positive integer * * Description: *   Let R be the representation of a matrix/vector M in a residue basis *   'basis', i.e., R[i] = mod(M, basis[i]) (i = 0..len-1). The function  *   computes the representation of M in another positive integer p,  *   RE = mod(M, p) using Garner's algorithm. 'mod' represents positive modular *   operation. * *   Let q be product of all elements in the RNS basis. Every entry m in M  *   satisfies 0 <= m <= q-1. That is, M only contains non-negative entries. * *   To avoid repeat computations, the function takes some precomputed  *   informations as input, which are listed below. * * Input: *       len: long, dimension of RNS basis *         n: long, length of array RE *         p: FiniteField, modulus *     basis: 1-dim FiniteField array length len, RNS basis *   cmbasis: 1-dim FiniteField array length len, computed by function  *            combBasis, inverses of special combination of RNS basis *         R: 1-dim Double array length n*len, representation of a len x n  *            matrix, R[i]=mod(M, basis[i]) (i=0..len-1) *  * Output: *   RE: 1-dim Double array length n, RE = mod(M, p), the space of RE  *       should be allocated before calling the function. * * Precondition:  *   t <= 2^53-1, where t is the maximal intermidiate value arised in this  *   function, t = max(2*(basis[len-1]-1)^2, (p-1)^2+basis[len-1]-1) *            */voidbasisExtPos (const long len, const long n, const FiniteField p, \	     const FiniteField *basis, const FiniteField *cmbasis, \	     Double **R, Double *RE){  long i, j;  double temp;  Double **U;  const FiniteField *q, *qinv;  q = basis;  qinv = cmbasis;  /* if p = q[i] then just copy the corresponding column to RE */  for (i = 0; i < len; i++)     { if (p == q[i]) { cblas_dcopy(n, R[i], 1, RE, 1); return; } }  U = XMALLOC(Double *, len);  for (i = 0; i < len; i++) { U[i] = XMALLOC(Double, n); }  /* compute the coefficients of mix radix in positive representation by      inplacing modular matrix U */  cblas_dcopy(n, R[0], 1, U[0], 1);  for (i = 1; i < len; i++)    {      cblas_dcopy(n, U[i-1], 1, U[i], 1);      for (j = i-2; j >= 0; j--)	{	  catlas_daxpby(n, 1.0, U[j], 1, (double)(q[j] % q[i]), U[i], 1);	  Dmod((double)q[i], U[i], 1, n, n);	}      temp = (double)qinv[i]*(double)(q[i]-1);      temp = fmod(temp, (double)q[i]);      catlas_daxpby(n, (double)qinv[i], R[i], 1, temp, U[i], 1);      Dmod((double)q[i], U[i], 1, n, n);    }  /* compute mod(r, p) in positive representation and store into RE */  cblas_dcopy(n, U[len-1], 1, RE, 1);  Dmod((double)p, RE, 1, n, n);  for (i = len-2; i >= 0; i--)    {      catlas_daxpby(n, 1.0, U[i], 1, (double)(q[i] % p), RE, 1);      Dmod((double)p, RE, 1, n, n);    }  for (i = 0; i < len; i++) { XFREE(U[i]); } { XFREE(U); }  return;}/* * * Calling Sequence: *   basisProd(len, basis, mp_prod) * * Summary: *   Compute the product of elements of a RNS basis * * Description: *   Let a RNS basis be 'basis'. The function computes the product of its  *   elements basis[0]*basis[1]*...*basis[len-1]. * * Input: *     len: long, dimension of RNS basis *   basis: 1-dim FiniteField array length len, RNS basis *  * Output: *   mp_prod: mpz_t, product of elements in 'basis' * */voidbasisProd (const long len, const FiniteField *basis, mpz_t mp_prod){  long i;  mpz_set_ui(mp_prod, basis[0]);  for (i = 1; i < len; i++) { mpz_mul_ui(mp_prod, mp_prod, basis[i]); }}/* * * Calling Sequence: *   ChineseRemainder(len, mp_prod, basis, cmbasis, bdcoeff, Ac, mp_Ac) * * Summary: *   Given a representation of an integer in some RNS, use Chinese Remainder  *   Algorithm to reconstruct the integer *  * Description: *   Let A be an integer, and Ac contains the representation of A in a RNS *   basis 'basis', i.e. Ac[i] = mod(A, basis[i]), (i = 0..len). Here 'mod'  *   is in positive representation. The function reconstructs the integer A  *   given the RNS basis 'basis' and Ac.  * *   To avoid repeat computations, the function takes some precomputed  *   informations as input, which are listed below. * * Input:  *       len: long, dimension of RNS basis *   mp_prod: mpz_t, computed by function basisProd, product of RNS basis *     basis: 1-dim FiniteField array length len, RNS basis *   cmbasis: 1-dim FiniteField array length len, computed by function  *            combBasis, inverses of special combination of RNS basis *   bdcoeff: 1-dim FiniteField array length len, computed by function repBound *        Ac: 1-dim Double array length n, representation of A in RNS  * * Output: *   mp_Ac: mpz_t, reconstructed integer A * * Precondition: *   Let q be product of all elements in the RNS basis. Then A must satisfy  *   -(q-1)/2 <= A <= (q-1)/2.  * */voidChineseRemainder (const long len, const mpz_t mp_prod, \		  const FiniteField *basis, const FiniteField *cmbasis, \		  const FiniteField *bdcoeff, Double *Ac, mpz_t mp_Ac) {  long i, j;  double temp, tempq, tempqinv;  Double *U;  U = XMALLOC(Double, len);  /* compute the coefficients of mix radix in positive representation by      inplacing modular matrix U */  U[0] = Ac[0];  for (i = 1; i < len; i++)    {      U[i] = U[i-1];      tempq = (double)basis[i];      tempqinv = (double)cmbasis[i];      for (j = i-2; j >= 0; j--)	{	  U[i] = U[j] + U[i]*fmod((double)basis[j], tempq);	  U[i] = fmod(U[i], tempq);	}      temp = fmod(tempqinv*(double)(basis[i]-1), tempq);      U[i] = fmod(tempqinv*Ac[i]+temp*U[i], tempq);    }  /* compute Ac in positive representation */  mpz_set_d(mp_Ac, U[len-1]);   for (j = len-2; j >= 0; j--)    {      mpz_mul_ui(mp_Ac, mp_Ac, basis[j]);      mpz_add_ui(mp_Ac, mp_Ac, (FiniteField)U[j]);    }  /* transfer from positive representation to symmetric representation */  for (j = len-1; j >= 0; j--)    {      if (U[j] > bdcoeff[j])	{	  mpz_sub(mp_Ac, mp_Ac, mp_prod);	  break;	}      else if (U[j] < bdcoeff[j]) { break; }    }  XFREE(U);  return;}/* * * Calling Sequence: *   ChineseRemainderPos(len, basis, cmbasis, Ac, mp_Ac) * * Summary: *   Given a representation of a non-negative integer in some RNS, use Chinese  *   Remainder Algorithm to reconstruct the integer * * Description: *   Let A be a non-negative integer, and Ac contains the representation of A *   in a RNS basis 'basis', i.e. Ac[i] = mod(A, basis[i]), (i = 0..len).  *   Here 'mod' is in positive representation. The function reconstructs the  *   integer A given the RNS basis 'basis' and Ac.  * *   To avoid repeat computations, the function takes some precomputed  *   informations as input, which are listed below. * * Input:  *       len: long, dimension of RNS basis *     basis: 1-dim FiniteField array length len, RNS basis *   cmbasis: 1-dim FiniteField array length len, computed by function  *            combBasis, inverses of special combination of RNS basis *        Ac: 1-dim Double array length n, representation of A in RNS  * * Output: *   mp_Ac: mpz_t, reconstructed integer A * * Precondition: *   Let q be product of all elements in the RNS basis. Then A must satisfy  *   0 <= A <= q-1.  * */voidChineseRemainderPos (const long len, const FiniteField *basis, \		     const FiniteField *cmbasis, Double *Ac, mpz_t mp_Ac) {  long i, j;  double temp, tempq, tempqinv;  Double *U;  U = XMALLOC(Double, len);  /* compute the coefficients of mix radix in positive representation by      inplacing modular matrix U */  U[0] = Ac[0];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -