📄 rdfprotondescriptor_g3r.java
字号:
singles, doubles, bondsInCycloex, mol .getAtomNumber(curAtomFifth), atoms, sphere, theBondIsInA6MemberedRing); atomsInSixthSphere = mol .getConnectedAtomsList(curAtomFifth); if (atomsInSixthSphere .size() > 0) { for (int e = 0; e < atomsInSixthSphere .size(); e++) { IAtom curAtomSixth = (IAtom) atomsInSixthSphere .get(e); sixthBond = mol .getBond( curAtomFifth, curAtomSixth); if (mol .getAtomNumber(curAtomSixth) != atomPosition && getIfBondIsNotRotatable( mol, sixthBond, detected)) { sphere = 6; bondOrder = sixthBond .getOrder(); bondNumber = mol .getBondNumber(sixthBond); theBondIsInA6MemberedRing = false; checkAndStore( bondNumber, bondOrder, singles, doubles, bondsInCycloex, mol .getAtomNumber(curAtomSixth), atoms, sphere, theBondIsInA6MemberedRing); atomsInSeventhSphere = mol .getConnectedAtomsList(curAtomSixth); if (atomsInSeventhSphere .size() > 0) { for (int f = 0; f < atomsInSeventhSphere .size(); f++) { IAtom curAtomSeventh = (IAtom) atomsInSeventhSphere .get(f); seventhBond = mol .getBond( curAtomSeventh, curAtomSixth); if (mol .getAtomNumber(curAtomSeventh) != atomPosition && getIfBondIsNotRotatable( mol, seventhBond, detected)) { sphere = 7; bondOrder = seventhBond .getOrder(); bondNumber = mol .getBondNumber(seventhBond); theBondIsInA6MemberedRing = false; checkAndStore( bondNumber, bondOrder, singles, doubles, bondsInCycloex, mol .getAtomNumber(curAtomSeventh), atoms, sphere, theBondIsInA6MemberedRing); } } } } } } } } } } } } } } } } } // Variables double distance; double sum; double smooth = -20; double partial; int position; double limitInf; double limitSup; double step; // ////////////////////////LAST DESCRIPTOR IS g3(r), FOR PROTONS BONDED // TO LIKE-CYCLOEXANE RINGS: Vector3d a_a = new Vector3d(); Vector3d a_b = new Vector3d(); Vector3d b_a = new Vector3d(); Vector3d b_b = new Vector3d(); double angle = 0; if (bondsInCycloex.size() > 0) { IAtom cycloexBondAtom0; IAtom cycloexBondAtom1; org.openscience.cdk.interfaces.IBond theInCycloexBond; distance = 0; limitInf = 0; limitSup = Math.PI; step = (limitSup - limitInf) / 13; position = 0; smooth = -2.86; angle = 0; int ya_counter = 0; List connAtoms; for (double g3r = 0; g3r < limitSup; g3r = g3r + step) { sum = 0; for (int cyc = 0; cyc < bondsInCycloex.size(); cyc++) { ya_counter = 0; angle = 0; partial = 0; Integer thisInCycloexBond = (Integer) bondsInCycloex .get(cyc); position = thisInCycloexBond.intValue(); theInCycloexBond = mol.getBond(position); cycloexBondAtom0 = theInCycloexBond.getAtom(0); cycloexBondAtom1 = theInCycloexBond.getAtom(1); connAtoms = mol.getConnectedAtomsList(cycloexBondAtom0); for (int g = 0; g < connAtoms.size(); g++) { if (((IAtom) connAtoms.get(g)).equals(neighbour0)) ya_counter += 1; } if (ya_counter > 0) { a_a.set(cycloexBondAtom1.getPoint3d().x, cycloexBondAtom1.getPoint3d().y, cycloexBondAtom1.getPoint3d().z); a_b.set(cycloexBondAtom0.getPoint3d().x, cycloexBondAtom0.getPoint3d().y, cycloexBondAtom0.getPoint3d().z); } else { a_a.set(cycloexBondAtom0.getPoint3d().x, cycloexBondAtom0.getPoint3d().y, cycloexBondAtom0.getPoint3d().z); a_b.set(cycloexBondAtom1.getPoint3d().x, cycloexBondAtom1.getPoint3d().y, cycloexBondAtom1.getPoint3d().z); } b_a.set(neighbour0.getPoint3d().x, neighbour0.getPoint3d().y, neighbour0.getPoint3d().z); b_b.set(atom.getPoint3d().x, atom.getPoint3d().y, atom .getPoint3d().z); angle = calculateAngleBetweenTwoLines(a_a, a_b, b_a, b_b); // logger.debug("gcycr ANGLE: " + angle + " " // +mol.getAtomNumber(cycloexBondAtom0) + " // "+mol.getAtomNumber(cycloexBondAtom1)); partial = Math.exp(smooth * (Math.pow((g3r - angle), 2))); sum += partial; } // g3r_function.add(new Double(sum)); rdfProtonCalculatedValues.add(sum); logger.debug("RDF g3r prob.: "+sum+ " at distance "+g3r); } } else { for (int i=0; i<g3r_desc_length; i++) rdfProtonCalculatedValues.add(Double.NaN); } return new DescriptorValue( getSpecification(), getParameterNames(), getParameters(), rdfProtonCalculatedValues, descriptorNames ); } // Others definitions private boolean getIfBondIsNotRotatable(Molecule mol, org.openscience.cdk.interfaces.IBond bond, IAtomContainer detected) { boolean isBondNotRotatable = false; int counter = 0; IAtom atom0 = bond.getAtom(0); IAtom atom1 = bond.getAtom(1); if (detected != null) { if (detected.contains(bond)) counter += 1; } if (atom0.getFlag(CDKConstants.ISINRING)) { if (atom1.getFlag(CDKConstants.ISINRING)) { counter += 1; } else { if (atom1.getSymbol().equals("H")) counter += 1; else counter += 0; } } if (atom0.getSymbol().equals("N") && atom1.getSymbol().equals("C")) { if (getIfACarbonIsDoubleBondedToAnOxygen(mol, atom1)) counter += 1; } if (atom0.getSymbol().equals("C") && atom1.getSymbol().equals("N")) { if (getIfACarbonIsDoubleBondedToAnOxygen(mol, atom0)) counter += 1; } if (counter > 0) isBondNotRotatable = true; return isBondNotRotatable; } private boolean getIfACarbonIsDoubleBondedToAnOxygen(Molecule mol, IAtom carbonAtom) { boolean isDoubleBondedToOxygen = false; java.util.List neighToCarbon = mol.getConnectedAtomsList(carbonAtom); org.openscience.cdk.interfaces.IBond tmpBond; int counter = 0; for (int nei = 0; nei < neighToCarbon.size(); nei++) { IAtom neighbour = (IAtom) neighToCarbon.get(nei); if (neighbour.getSymbol().equals("O")) { tmpBond = mol.getBond(neighbour, carbonAtom); if (tmpBond.getOrder() == 2.0) counter += 1; } } if (counter > 0) isDoubleBondedToOxygen = true; return isDoubleBondedToOxygen; } // this method calculates the angle between two bonds given coordinates of // their atoms public double calculateAngleBetweenTwoLines(Vector3d a, Vector3d b, Vector3d c, Vector3d d) { Vector3d firstLine = new Vector3d(); firstLine.sub(a, b); Vector3d secondLine = new Vector3d(); secondLine.sub(c, d); Vector3d firstVec = new Vector3d(firstLine); Vector3d secondVec = new Vector3d(secondLine); return firstVec.angle(secondVec); } // this method store atoms and bonds in proper lists: private void checkAndStore(int bondToStore, double bondOrder, ArrayList singleVec, ArrayList doubleVec, ArrayList cycloexVec, int a1, ArrayList atomVec, int sphere, boolean isBondInCycloex) { if (!atomVec.contains(new Integer(a1))) { if (sphere < 6) atomVec.add(new Integer(a1)); } if (!cycloexVec.contains(new Integer(bondToStore))) { if (isBondInCycloex) { cycloexVec.add(new Integer(bondToStore)); } } if (bondOrder == 2.0) { if (!doubleVec.contains(new Integer(bondToStore))) doubleVec.add(new Integer(bondToStore)); } if (bondOrder == 1.0) { if (!singleVec.contains(new Integer(bondToStore))) singleVec.add(new Integer(bondToStore)); } } // generic method for calculation of distance btw 2 atoms private double calculateDistanceBetweenTwoAtoms(IAtom atom1, IAtom atom2) { double distance; Point3d firstPoint = atom1.getPoint3d(); Point3d secondPoint = atom2.getPoint3d(); distance = firstPoint.distance(secondPoint); return distance; } // given a double bond // this method returns a bond bonded to this double bond private int getNearestBondtoAGivenAtom(Molecule mol, IAtom atom, org.openscience.cdk.interfaces.IBond bond) { int nearestBond = 0; double[] values; double distance = 0; IAtom atom0 = bond.getAtom(0); IAtom atom1 = bond.getAtom(1); List bondsAtLeft = mol.getConnectedBondsList(atom0); int partial; for (int i = 0; i < bondsAtLeft.size(); i++) { IBond curBond = (IBond) bondsAtLeft.get(i); values = calculateDistanceBetweenAtomAndBond(atom, curBond); partial = mol.getBondNumber(curBond); if (i == 0) { nearestBond = mol.getBondNumber(curBond); distance = values[0]; } else { if (values[0] < distance) { nearestBond = partial; } /* * XXX commented this out, because is has no effect * * else { nearestBond = nearestBond; } */ } } return nearestBond; } // method which calculated distance btw an atom and the middle point of a // bond // and returns distance and coordinates of middle point private double[] calculateDistanceBetweenAtomAndBond(IAtom proton, org.openscience.cdk.interfaces.IBond theBond) { Point3d middlePoint = theBond.get3DCenter(); Point3d protonPoint = proton.getPoint3d(); double[] values = new double[4]; values[0] = middlePoint.distance(protonPoint); values[1] = middlePoint.x; values[2] = middlePoint.y; values[3] = middlePoint.z; return values; } /** * Gets the parameterNames attribute of the RDFProtonDescriptor object * * @return The parameterNames value */ public String[] getParameterNames() { String[] params = new String[2]; params[0] = "atomPosition"; params[1] = "checkAromaticity"; return params; } /** * Gets the parameterType attribute of the RDFProtonDescriptor object * * @param name * Description of the Parameter * @return The parameterType value */ public Object getParameterType(String name) { if (name.equals("atomPosition")) return new Integer(0); return Boolean.TRUE; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -