📄 momentofinertiadescriptor.java
字号:
/* * Copyright (C) 2004-2007 The Chemistry Development Kit (CDK) project * * Contact: cdk-devel@lists.sourceforge.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */package org.openscience.cdk.qsar.descriptors.molecular;import Jama.EigenvalueDecomposition;import Jama.Matrix;import org.openscience.cdk.config.IsotopeFactory;import org.openscience.cdk.exception.CDKException;import org.openscience.cdk.geometry.GeometryToolsInternalCoordinates;import org.openscience.cdk.interfaces.IAtomContainer;import org.openscience.cdk.qsar.DescriptorSpecification;import org.openscience.cdk.qsar.DescriptorValue;import org.openscience.cdk.qsar.IMolecularDescriptor;import org.openscience.cdk.qsar.result.DoubleArrayResult;import org.openscience.cdk.qsar.result.IDescriptorResult;import org.openscience.cdk.tools.LoggingTool;import org.openscience.cdk.tools.MFAnalyser;import javax.vecmath.Point3d;/** * A descriptor that calculates the moment of inertia and radius of gyration. * Moment of inertia (MI) values characterize the mass distribution of a molecule. * Related to the MI values, ratios of the MI values along the three principal axes * are also well know modeling variables. This descriptor calculates the MI values * along the X, Y and Z axes as well as the ratio's X/Y, X/Z and Y/Z. Finally it also * calculates the radius of gyration of the molecule. * <p/> * The descriptor generates 7 values in the following order * <ul> * <li>MOMI-X - MI along X axis * <li>MOMI-Y - MI along Y axis * <li>MOMI-Z - MI along Z axis * <li>MOMI-XY - X/Y * <li>MOMI-XZ - X/Z * <li>MOMI-YZ Y/Z * <li>MOMI-R - Radius of gyration * </ul> * One important aspect of the algorithm is that if the eigenvalues of the MI tensor * are below 1e-3, then the ratio's are set to a default of 1000. * <p/> * <p>This descriptor uses these parameters: * <table border="1"> * <tr> * <td>Name</td> * <td>Default</td> * <td>Description</td> * </tr> * <tr> * <td></td> * <td></td> * <td>no parameters</td> * </tr> * </table> * * @author Rajarshi Guha * @cdk.created 2005-02-07 * @cdk.builddepends Jama-1.0.1.jar * @cdk.depends Jama-1.0.1.jar * @cdk.module qsar * @cdk.set qsar-descriptors * @cdk.dictref qsar-descriptors:momentOfInertia * @cdk.keyword moment of inertia */public class MomentOfInertiaDescriptor implements IMolecularDescriptor { private LoggingTool logger; public MomentOfInertiaDescriptor() { logger = new LoggingTool(this); } public DescriptorSpecification getSpecification() { return new DescriptorSpecification( "http://www.blueobelisk.org/ontologies/chemoinformatics-algorithms/#momentOfInertia", this.getClass().getName(), "$Id: MomentOfInertiaDescriptor.java 9056 2007-10-14 18:32:26Z egonw $", "The Chemistry Development Kit"); } /** * Sets the parameters attribute of the MomentOfInertiaDescriptor object. * * @param params The new parameters value * @throws CDKException Description of the Exception * @see #getParameters */ public void setParameters(Object[] params) throws CDKException { // no parameters for this descriptor } /** * Gets the parameters attribute of the MomentOfInertiaDescriptor object. * * @return The parameters value * @see #setParameters */ public Object[] getParameters() { // no parameters to return return (null); } /** * Gets the parameterNames attribute of the MomentOfInertiaDescriptor object. * * @return The parameterNames value */ public String[] getParameterNames() { // no param names to return return (null); } /** * Gets the parameterType attribute of the MomentOfInertiaDescriptor object. * * @param name Description of the Parameter * @return The parameterType value */ public Object getParameterType(String name) { return (null); } /** * Calculates the 3 MI's, 3 ration and the R_gyr value. * * The molecule should have hydrogens * * @param container Parameter is the atom container. * @return An ArrayList containing 7 elements in the order described above * @throws CDKException if the supplied AtomContainer does not contain 3D coordinates */ public DescriptorValue calculate(IAtomContainer container) throws CDKException { IsotopeFactory factory = null; try { factory = IsotopeFactory.getInstance(container.getBuilder()); } catch (Exception e) { logger.debug(e); } factory.configureAtoms(container); DoubleArrayResult retval = new DoubleArrayResult(7); double ccf = 1.000138; double eps = 1e-5; double[][] imat = new double[3][3]; Point3d centerOfMass = GeometryToolsInternalCoordinates.get3DCentreOfMass(container); double xdif; double ydif; double zdif; double xsq; double ysq; double zsq; for (int i = 0; i < container.getAtomCount(); i++) { org.openscience.cdk.interfaces.IAtom currentAtom = container.getAtom(i); if (currentAtom.getPoint3d() == null) { throw new CDKException("Atom " + i + " did not have any 3D coordinates. These are required"); } double mass = factory.getMajorIsotope(currentAtom.getSymbol()).getExactMass(); xdif = currentAtom.getPoint3d().x - centerOfMass.x; ydif = currentAtom.getPoint3d().y - centerOfMass.y; zdif = currentAtom.getPoint3d().z - centerOfMass.z; xsq = xdif * xdif; ysq = ydif * ydif; zsq = zdif * zdif; imat[0][0] += mass * (ysq + zsq); imat[1][1] += mass * (xsq + zsq); imat[2][2] += mass * (xsq + ysq); imat[1][0] += -1 * mass * ydif * xdif; imat[0][1] = imat[1][0]; imat[2][0] += -1 * mass * xdif * zdif; imat[0][2] = imat[2][0]; imat[2][1] += -1 * mass * ydif * zdif; imat[1][2] = imat[2][1]; } // diagonalize the MI tensor Matrix tmp = new Matrix(imat); EigenvalueDecomposition eigenDecomp = tmp.eig(); double[] eval = eigenDecomp.getRealEigenvalues(); retval.add(eval[2]); retval.add(eval[1]); retval.add(eval[0]); double etmp = eval[0]; eval[0] = eval[2]; eval[2] = etmp; if (Math.abs(eval[1]) > 1e-3) retval.add(eval[0] / eval[1]); else retval.add(1000); if (Math.abs(eval[2]) > 1e-3) { retval.add(eval[0] / eval[2]); retval.add(eval[1] / eval[2]); } else { retval.add(1000); retval.add(1000); } // finally get the radius of gyration double pri = 0.0; MFAnalyser mfa = new MFAnalyser(container); if (Math.abs(eval[2]) > eps) pri = Math.pow(eval[0] * eval[1] * eval[2], 1.0 / 3.0); else pri = Math.sqrt(eval[0] * ccf / mfa.getMass()); retval.add(Math.sqrt(Math.PI * 2 * pri * ccf / mfa.getMass())); String[] names = { "MOMI-X", "MOMI-Y", "MOMI-Z", "MOMI-XY", "MOMI-XZ", "MOMI-YZ", "MOMI-R" }; return new DescriptorValue(getSpecification(), getParameterNames(), getParameters(), retval, names); } /** * Returns the specific type of the DescriptorResult object. * <p/> * The return value from this method really indicates what type of result will * be obtained from the {@link org.openscience.cdk.qsar.DescriptorValue} object. Note that the same result * can be achieved by interrogating the {@link org.openscience.cdk.qsar.DescriptorValue} object; this method * allows you to do the same thing, without actually calculating the descriptor. * * @return an object that implements the {@link org.openscience.cdk.qsar.result.IDescriptorResult} interface indicating * the actual type of values returned by the descriptor in the {@link org.openscience.cdk.qsar.DescriptorValue} object */ public IDescriptorResult getDescriptorResultType() { return new DoubleArrayResult(); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -