📄 cnnregressionmodel.java
字号:
package org.openscience.cdk.qsar.model.R2;import org.openscience.cdk.qsar.model.QSARModelException;import org.openscience.cdk.tools.LoggingTool;import org.rosuda.JRI.RBool;import org.rosuda.JRI.REXP;import org.rosuda.JRI.RList;import java.io.File;import java.util.HashMap;/** * A modeling class that provides a computational neural network regression model. * <p/> * When instantiated this class ensures that the R/Java interface has been * initialized. The response and independent variables can be specified at construction * time or via the <code>setParameters</code> method. * The actual fitting procedure is carried out by <code>build</code> after which * the model may be used to make predictions, via <code>predict</code>. An example of the use * of this class is shown below: * <pre> * double[][] x; * double[] y; * Double[] wts; * Double[][] newx; * ... * try { * CNNRegressionModel cnnrm = new CNNRegressionModel(x,y,3); * cnnrm.setParameters("Wts",wts); * cnnrm.build(); * <p/> * double fitValue = cnnrm.getFitValue(); * <p/> * cnnrm.setParameters("newdata", newx); * cnnrm.setParameters("type", "raw"); * cnnrm.predict(); * <p/> * double[][] preds = cnnrm.getPredictPredicted(); * } catch (QSARModelException qme) { * System.out.println(qme.toString()); * } * </pre> * The above code snippet builds a 3-3-1 CNN model. * Multiple output neurons are easily * specified by supplying a matrix for y (i.e., double[][]) with the output variables * in the columns. * <p/> * Nearly all the arguments to * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet()</a> are * supported via the <code>setParameters</code> method. The table below lists the names of the arguments, * the expected type of the argument and the default setting for the arguments supported by this wrapper class. * <center> * <table border=1 cellpadding=5> * <THEAD> * <tr> * <th>Name</th><th>Java Type</th><th>Default</th><th>Notes</th> * </tr> * </thead> * <tbody> * <tr><td>x</td><td>Double[][]</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>y</td><td>Double[][]</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>weights</td><td>Double[]</td><td>rep(1,nobs)</td><td>The default case weights is a vector of 1's equal in length to the number of observations, nobs</td></tr> * <tr><td>size</td><td>Integer</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>subset</td><td>Integer[]</td><td>1:nobs</td><td>This is supposed to be an index vector specifying which observations are to be used in building the model. The default indicates that all should be used</td></tr> * <tr><td>Wts</td><td>Double[]</td><td>runif(1,nwt)</td><td>The initial weight vector is set to a random vector of length equal to the number of weights if not set by the user</td></tr> * <tr><td>mask</td><td>Boolean[]</td><td>rep(TRUE,nwt)</td><td>All weights are to be optimized unless otherwise specified by the user</td></tr> * <tr><td>linout</td><td>Boolean</td><td>TRUE</td><td>Since this class performs regression this need not be changed</td></tr> * <tr><td>entropy</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>softmax</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>censored</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>skip</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>rang</td><td>Double</td><td>0.7</td><td></td></tr> * <tr><td>decay</td><td>Double</td><td>0.0</td><td></td></tr> * <tr><td>maxit</td><td>Integer</td><td>100</td><td></td></tr> * <tr><td>Hess</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>trace</td><td>Boolean</td><td>TRUE</td><td></td></tr> * <tr><td>MaxNWts</td><td>Integer</td><td>1000</td><td></td></tr> * <tr><td>abstol</td><td>Double</td><td>1.0e-4</td><td></td></tr> * <tr><td>reltol</td><td>Double</td><td>1.0e-8</td><td></td></tr> * </tbody> * </table> * </center> * <p/> * The values returned correspond to the various * values returned by the <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a> and * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/predict.nnet.html" target="_top">predict.nnet</a> functions * in R * <p/> * See {@link org.openscience.cdk.qsar.model.R.RModel} for details regarding the R and Java environment. * * @author Rajarshi Guha * @cdk.require r-project * @cdk.require java1.5+ * @cdk.module qsar * @cdk.keyword neural network * @cdk.keyword R */public class CNNRegressionModel extends RModel { public static int globalID = 0; private int noutput = 0; private int nvar = 0; private double[][] modelPredict = null; private static LoggingTool logger; private void setDefaults() { // lets set the default values of the arguments that are specified // to have default values in ?nnet // these params are vectors that depend on user defined stuff // so as a default we set them to FALSE so R can check if these // were not set this.params.put("subset", Boolean.FALSE); this.params.put("mask", Boolean.FALSE); this.params.put("Wts", Boolean.FALSE); this.params.put("weights", Boolean.FALSE); this.params.put("linout", Boolean.TRUE); // we want only regression this.params.put("entropy", Boolean.FALSE); this.params.put("softmax", Boolean.FALSE); this.params.put("censored", Boolean.FALSE); this.params.put("skip", Boolean.FALSE); this.params.put("rang", new Double(0.7)); this.params.put("decay", new Double(0.0)); this.params.put("maxit", new Integer(100)); this.params.put("Hess", Boolean.FALSE); this.params.put("trace", Boolean.FALSE); // no need to see output this.params.put("MaxNWts", new Integer(1000)); this.params.put("abstol", new Double(1.0e-4)); this.params.put("reltol", new Double(1.0e-8)); } /** * Constructs a CNNRegressionModel object. * <p/> * This constructor allows the user to simply set up an instance of a CNN * regression modeling class. This constructor simply sets the name for this * instance. It is expected all the relevent parameters for modeling will be * set at a later point. * <p/> * Other parameters that are required to be set should be done via * calls to <code>setParameters</code>. A number of parameters are set to the * defaults as specified in the manpage for * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>. */ public CNNRegressionModel() throws QSARModelException { super(); logger = new LoggingTool(this); params = new HashMap(); int currentID = CNNRegressionModel.globalID; CNNRegressionModel.globalID++; setModelName("cdkCNNModel" + currentID); setDefaults(); } /** * Constructs a CNNRegressionModel object. * <p/> * This constructor allows the user to specify the dependent and * independent variables along with the number of hidden layer neurons. * This constructor is suitable for cases when there is a single output * neuron. If the number of rows of the design matrix is not equal to * the number of observations in y an exception will be thrown. * <p/> * Other parameters that are required to be set should be done via * calls to <code>setParameters</code>. A number of parameters are set to the * defaults as specified in the manpage for * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>. * * @param x An array of independent variables. Observations should be in * the rows and variables in the columns. * @param y An array (single column) of observed values * @param size The number of hidden layer neurons * @throws QSARModelException if the number of observations in x and y do not match */ public CNNRegressionModel(double[][] x, double[] y, int size) throws QSARModelException { super(); logger = new LoggingTool(this); params = new HashMap(); int currentID = CNNRegressionModel.globalID; CNNRegressionModel.globalID++; setModelName("cdkCNNModel" + currentID); int nrow = y.length; int ncol = x[0].length; if (nrow != x.length) { throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix"); } nvar = ncol; noutput = 1; Double[][] xx = new Double[nrow][ncol]; Double[][] yy = new Double[nrow][1]; for (int i = 0; i < nrow; i++) { yy[i][0] = new Double(y[i]); for (int j = 0; j < ncol; j++) { xx[i][j] = new Double(x[i][j]); } } params.put("x", xx); params.put("y", yy); params.put("size", new Integer(size)); setDefaults(); } /** * Constructs a CNNRegressionModel object. * <p/> * This constructor allows the user to specify the dependent and * independent variables along with the number of hidden layer neurons. * This constructor is suitable for cases when there are multiple output * neuron. If the number of rows of the design matrix is not equal to * the number of observations in y an exception will be thrown. * <p/> * Other parameters that are required to be set should be done via * calls to <code>setParameters</code>. A number of parameters are set to the * defaults as specified in the manpage for * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>. * * @param x An array of independent variables. Observations should be in * the rows and variables in the columns. * @param y An array (multiple columns) of observed values * @param size The number of hidden layer neurons * @throws QSARModelException if the number of observations in x and y do not match */ public CNNRegressionModel(double[][] x, double[][] y, int size) throws QSARModelException { super(); logger = new LoggingTool(this); params = new HashMap(); int currentID = CNNRegressionModel.globalID; CNNRegressionModel.globalID++; setModelName("cdkCNNModel" + currentID); int nrow = y.length; int ncol = x[0].length; if (nrow != x.length) { throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix"); } nvar = ncol; noutput = y[0].length; Double[][] xx = new Double[nrow][ncol]; Double[][] yy = new Double[nrow][noutput]; for (int i = 0; i < nrow; i++) { for (int j = 0; j < ncol; j++) { xx[i][j] = new Double(x[i][j]); } } for (int i = 0; i < nrow; i++) { for (int j = 0; j < noutput; j++) { yy[i][j] = new Double(y[i][j]); } } params.put("x", xx); params.put("y", yy); params.put("size", new Integer(size)); setDefaults(); } /** * Sets parameters required for building a CNN model or using one for prediction. * <p/> * This function allows the caller to set the various parameters available * for the * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a> * and * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/predict.nnet.html" target="_top">predict.nnet</a> * R routines. See the R help pages for the details of the available * parameters. * * @param key A String containing the name of the parameter as described in the * R help pages * @param obj An Object containing the value of the parameter * @throws QSARModelException if the type of the supplied value does not match the * expected type */ public void setParameters(String key, Object obj) throws QSARModelException { // since we know the possible values of key we should check the coresponding // objects and throw errors if required. Note that this checking can't really check // for values (such as number of variables in the X matrix to build the model and the // X matrix to make new predictions) - these should be checked in functions that will // use these parameters. The main checking done here is for the class of obj and // some cases where the value of obj is not dependent on what is set before it if (key.equals("y")) { if (!(obj instanceof Double[][])) { throw new QSARModelException("The class of the 'y' object must be Double[][]"); } else { noutput = ((Double[][]) obj)[0].length; } } if (key.equals("x")) { if (!(obj instanceof Double[][])) { throw new QSARModelException("The class of the 'x' object must be Double[][]"); } else { nvar = ((Double[][]) obj)[0].length; } } if (key.equals("weights")) { if (!(obj instanceof Double[])) { throw new QSARModelException("The class of the 'weights' object must be Double[]"); } } if (key.equals("size")) { if (!(obj instanceof Integer)) { throw new QSARModelException("The class of the 'size' object must be Integer"); } } if (key.equals("subset")) { if (!(obj instanceof Integer[])) { throw new QSARModelException("The class of the 'size' object must be Integer[]"); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -