⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cnnregressionmodelsummary.java

📁 化学图形处理软件
💻 JAVA
字号:
/* *  Copyright (C) 2004-2007  The Chemistry Development Kit (CDK) project * *  Contact: cdk-devel@lists.sourceforge.net * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public License *  as published by the Free Software Foundation; either version 2.1 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */package org.openscience.cdk.qsar.model.R;/** A class that represents a summary of a CNN regression model. * * This class essentially wraps the result of summary.nnet. As with other  * backend classes this class should not be instantiated directly by the  * user, though the various fields may be accessed with the provided  * methods. * * @author Rajarshi Guha * @cdk.require r-project * @cdk.module qsar * @deprecated  */public class CNNRegressionModelSummary {    double[] residuals;    boolean entropy, softmax, censored;    double value;    int[] n;    /**     * Constructor for an object that wraps the return value from summary.lm.     *     * This should not be instantiated directly. The class is meant to be instantiated     * from an R session     *     * @param n A 3 element array containing the number of neurons in the      * input, hidden and output layer respectively     * @param entropy  A boolean indicating whether the entropy setting was used     * @param softmax A boolean indicating whether the softmax setting was used     * @param censored A boolean indicating whether the censored setting was used     * @param value The final value of the convergenc criterion     * @param residuals A 1-dimensional array of residual values     */    public CNNRegressionModelSummary( int[] n, boolean entropy,             boolean softmax, boolean censored, double value,            double[] residuals) {        this.residuals = new double[residuals.length];        for (int i = 0; i < residuals.length; i++)            this.residuals[i] = residuals[i];        this.n = new int[n.length];        for (int i = 0; i < n.length; i++)             this.n[i] = n[i];        this.softmax = softmax;        this.censored = censored;        this.entropy = entropy;        this.value = value;    }    /**     * Constructor for an object that wraps the return value from summary.lm.     *     * This should not be instantiated directly. The class is meant to be instantiated     * from an R session     *     * @param n A 3 element array containing the number of neurons in the      * input, hidden and output layer respectively     * @param entropy  A boolean indicating whether the entropy setting was used     * @param softmax A boolean indicating whether the softmax setting was used     * @param censored A boolean indicating whether the censored setting was used     * @param value The final value of the convergenc criterion     * @param residuals A 1-dimensional array of residual values     */    public CNNRegressionModelSummary( double[] n, boolean entropy,             boolean softmax, boolean censored, double value,            double[] residuals) {        this.residuals = new double[residuals.length];        for (int i = 0; i < residuals.length; i++)            this.residuals[i] = residuals[i];        this.n = new int[n.length];        for (int i = 0; i < n.length; i++)             this.n[i] = (int)n[i];        this.softmax = softmax;        this.censored = censored;        this.entropy = entropy;        this.value = value;    }    /**     * Return the residuals of the fit.     *     * @return A 1-dimensional array of doubles containing the      * residuals of the fit     */    public double[] getResiduals() {        return(this.residuals);    }    /**     * Return the number of neurons in the CNN layers.     *     * This method returns a 3-element array containing the number     * of neurons in the input, hidden and output layer     * respectively.     *     * @return A 3-element int array     */    public int[] getNumNeurons() {        return(this.n);    }    /**     * Return the final value of the convergence criterion.     *     * @return The final value of the convergence criterion     */    public double getValue(){        return(this.value);    }    /**     * Return whether softmax was used.     *     * @return A boolean indicating whether softmax was used or not     */    public boolean getSoftmax() {        return(this.softmax);    }    /**     * Return whether entropy was used.     *     * @return A boolean indicating whether entropy was used or not     */    public boolean getEntropy() {        return(this.entropy);    }    /**     * Return whether censored was used.     *     * @return A boolean indicating whether censored was used or not     */    public boolean getCensored() {        return(this.censored);    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -