⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cnnclassificationmodel.java

📁 化学图形处理软件
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *  Copyright (C) 2004-2007  The Chemistry Development Kit (CDK) project * *  Contact: cdk-devel@lists.sourceforge.net * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public License *  as published by the Free Software Foundation; either version 2.1 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */package org.openscience.cdk.qsar.model.R;import org.openscience.cdk.qsar.model.QSARModelException;import java.util.HashMap;/**  * A modeling class that provides a computational neural network classification model. * * When instantiated this class ensures that the R/Java interface has been  * initialized. The response and independent variables can be specified at construction * time or via the <code>setParameters</code> method.  * The actual fitting procedure is carried out by <code>build</code> after which  * the model may be used to make predictions, via <code>predict</code>. An example of the use * of this class is shown below: * <pre> * double[][] x; * String[] y; * Double[] wts; * Double[][] newx; * ... * try { *     CNNClassificationModel cnnrm = new CNNClassificationModel(x,y,3); *     cnnrm.setParameters("Wts",wts); *     cnnrm.build(); *      *     double fitValue = cnnrm.getFitValue(); *      *     cnnrm.setParameters("newdata", newx); *     cnnrm.setParameters("type", "raw"); *     cnnrm.predict(); * *     double[][] preds = cnnrm.getPredictPredicted(); * } catch (QSARModelException qme) { *     System.out.println(qme.toString()); * } * </pre> * The above code snippet builds a 3-3-1 CNN model. * Multiple output neurons are easily * specified by supplying a matrix for y (i.e., double[][]) with the output variables * in the columns.  * <p> * Nearly all the arguments to  * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet()</a> are * supported via the <code>setParameters</code> method. The table below lists the names of the arguments, * the expected type of the argument and the default setting for the arguments supported by this wrapper class. * <center> * <table border=1 cellpadding=5> * <THEAD> * <tr> * <th>Name</th><th>Java Type</th><th>Default</th><th>Notes</th> * </tr> * </thead> * <tbody> * <tr><td>x</td><td>Double[][]</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>y</td><td>String[][]</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>weights</td><td>Double[]</td><td>rep(1,nobs)</td><td>The default case weights is a vector of 1's equal in length to the number of observations, nobs</td></tr> * <tr><td>size</td><td>Integer</td><td>None</td><td>This must be set by the caller via the constructors or via <code>setParameters</code></td></tr> * <tr><td>subset</td><td>Integer[]</td><td>1:nobs</td><td>This is supposed to be an index vector specifying which observations are to be used in building the model. The default indicates that all should be used</td></tr> * <tr><td>Wts</td><td>Double[]</td><td>runif(1,nwt)</td><td>The initial weight vector is set to a random vector of length equal to the number of weights if not set by the user</td></tr> * <tr><td>mask</td><td>Boolean[]</td><td>rep(TRUE,nwt)</td><td>All weights are to be optimized unless otherwise specified by the user</td></tr> * <tr><td>linout</td><td>Boolean</td><td>FALSE</td><td>Since this class performs classification this need not be changed</td></tr> * <tr><td>entropy</td><td>Boolean</td><td>TRUE</td><td></td></tr> * <tr><td>softmax</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>censored</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>skip</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>rang</td><td>Double</td><td>0.7</td><td></td></tr> * <tr><td>decay</td><td>Double</td><td>0.0</td><td></td></tr> * <tr><td>maxit</td><td>Integer</td><td>100</td><td></td></tr> * <tr><td>Hess</td><td>Boolean</td><td>FALSE</td><td></td></tr> * <tr><td>trace</td><td>Boolean</td><td>TRUE</td><td></td></tr> * <tr><td>MaxNWts</td><td>Integer</td><td>1000</td><td></td></tr> * <tr><td>abstol</td><td>Double</td><td>1.0e-4</td><td></td></tr> * <tr><td>reltol</td><td>Double</td><td>1.0e-8</td><td></td></tr> * </tbody> * </table> * </center> * <p> * In general the <code>getFit*</code> methods provide access to results from the fit * and <code>getPredict*</code> methods provide access to results from the prediction (i.e., * prediction using the model on new data). The values returned correspond to the various  * values returned by the <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a> and * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/predict.nnet.html" target="_top">predict.nnet</a> functions * in R * <p> * See {@link RModel} for details regarding the R and SJava environment. *  * @author Rajarshi Guha * @cdk.require r-project * @cdk.module qsar *  * @cdk.keyword neural network * @cdk.keyword classification * @deprecated */public class CNNClassificationModel extends RModel {        static int globalID = 0;    private int currentID;    private CNNClassificationModelFit modelfit = null;    private CNNClassificationModelPredict modelpredict = null;    private HashMap params = null;    private int noutput = 0;    private int nvar = 0;    private void setDefaults() {        // lets set the default values of the arguments that are specified        // to have default values in ?nnet        // these params are vectors that depend on user defined stuff        // so as a default we set them to FALSE so R can check if these        // were not set        this.params.put("subset", new Boolean(false));        this.params.put("mask", new Boolean(false) );        this.params.put("Wts", new Boolean(false));        this.params.put("weights", new Boolean(false));        this.params.put("linout", new Boolean(false)); // we want only classification        this.params.put("entropy", new Boolean(true));        this.params.put("softmax",new Boolean(false));        this.params.put("censored", new Boolean(false));        this.params.put("skip", new Boolean(false));        this.params.put("rang", new Double(0.7));        this.params.put("decay", new Double(0.0));        this.params.put("maxit", new Integer(100));        this.params.put("Hess", new Boolean(false));        this.params.put("trace", new Boolean(false)); // no need to see output        this.params.put("MaxNWts", new Integer(1000));        this.params.put("abstol", new Double(1.0e-4));        this.params.put("reltol", new Double(1.0e-8));    }                /**     * Constructs a CNNClassificationModel object.     *     * This constructor allows the user to simply set up the modeling class. It is     * expected that parameters such as training data, architecture will be set at a      * later point. The result of this constructor is to simply create a name for the      * current instance of the modeling object.     * <p>     * Other parameters that are required to be set should be done via     * calls to <code>setParameters</code>. A number of parameters are set to the     * defaults as specified in the manpage for      * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>.     *     */    public CNNClassificationModel() {        super();        this.params = new HashMap();        this.currentID = CNNClassificationModel.globalID;        CNNClassificationModel.globalID++;        this.setModelName("cdkCNNCModel"+this.currentID);        this.setDefaults();    }    /**     * Constructs a CNNClassificationModel object.     *     * This constructor allows the user to specify the dependent and     * independent variables along with the number of hidden layer neurons.     * This constructor is suitable for cases when there is a single output      * neuron. If the number of rows of the design matrix is not equal to      * the number of observations in y an exception will be thrown.     * <p>     * Other parameters that are required to be set should be done via     * calls to <code>setParameters</code>. A number of parameters are set to the     * defaults as specified in the manpage for      * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>.     *     * @param x An array of independent variables. Observations should be in     * the rows and variables in the columns.     * @param y An array (single column) of observed class assignments     * @param size The number of hidden layer neurons     * @throws QSARModelException if the number of observations in x and y are not the same     */    public CNNClassificationModel(double[][] x, String[] y, int size) throws QSARModelException {        super();        this.params = new HashMap();        this.currentID = CNNClassificationModel.globalID;        CNNClassificationModel.globalID++;        this.setModelName("cdkCNNCModel"+this.currentID);        int nrow = y.length;        int ncol = x[0].length;                if (nrow != x.length) {            throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix");        }        this.nvar = ncol;        this.noutput = 1;                Double[][] xx = new Double[nrow][ncol];        String[][] yy = new String[nrow][1];        for (int i = 0; i < nrow; i++) {            yy[i][0] = new String(y[i]);            for (int j = 0; j < ncol; j++) {                xx[i][j] = new Double(x[i][j]);            }        }        this.params.put("x", xx);        this.params.put("y", yy);        this.params.put("size", new Integer(size));        this.setDefaults();    }        /**     * Constructs a CNNClassificationModel object.     *     * This constructor allows the user to specify the dependent and     * independent variables along with the number of hidden layer neurons.     * This constructor is suitable for cases when there are multiple output      * neuron. If the number of rows of the design matrix is not equal to      * the number of observations in y an exception will be thrown.     * <p>     * Other parameters that are required to be set should be done via     * calls to <code>setParameters</code>. A number of parameters are set to the     * defaults as specified in the manpage for      * <a href="http://www.maths.lth.se/help/R/.R/library/nnet/html/nnet.html" target="_top">nnet</a>.     *     * @param x An array of independent variables. Observations should be in     * the rows and variables in the columns.     * @param y An array (multiple columns) of observed values     * @param size The number of hidden layer neurons     * @throws QSARModelException if the number of observations in x and y are not the same     */    public CNNClassificationModel(double[][] x, String[][] y, int size) throws QSARModelException{        super();        this.params = new HashMap();        this.currentID = CNNClassificationModel.globalID;        CNNClassificationModel.globalID++;        this.setModelName("cdkCNNCModel"+this.currentID);        int nrow = y.length;        int ncol = x[0].length;                if (nrow != x.length) {            throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix");        }        this.nvar = ncol;        this.noutput = y[0].length;                Double[][] xx = new Double[nrow][ncol];        String[][] yy = new String[nrow][this.noutput];        for (int i = 0; i < nrow; i++) {            for (int j = 0; j < ncol; j++) {                xx[i][j] = new Double(x[i][j]);            }        }        for (int i = 0; i < nrow; i++) {            for (int j = 0; j < this.noutput; j++) {                yy[i][j] = new String(y[i][j]);            }        }        this.params.put("x", xx);        this.params.put("y", yy);        this.params.put("size", new Integer(size));        this.setDefaults();    }        /**     * Sets parameters required for building a linear model or using one for prediction.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -