⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cnnclassificationmodelpredict.java

📁 化学图形处理软件
💻 JAVA
字号:
/* *  Copyright (C) 2004-2007  The Chemistry Development Kit (CDK) project * *  Contact: cdk-devel@lists.sourceforge.net * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public License *  as published by the Free Software Foundation; either version 2.1 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */package org.openscience.cdk.qsar.model.R;/** * A class that wraps the return value from the R function, predict.nnet for classification models. * * This is an internal class used by R to return the result of * the call to <a href="http://stat.ethz.ch/R-manual/R-patched/library/nnet/html/predict.nnet.html">predict.nnet</a>. * As a result it should not be instantiated by the user. The actual modeling * class, <code>CNNClassificationModel</code>, provides acess to the various * fields of this object. *  * * @author Rajarshi Guha * @cdk.require r-project * @cdk.module qsar * @deprecated */public class CNNClassificationModelPredict {    private int noutput;    private double[][] predvalraw;    private String[] predvalclass;    private double[][] vectorToMatrix(double[] v, int nrow, int ncol) {        double[][] m = new double[nrow][ncol];        for (int i = 0; i < ncol; i++) {            for (int j = 0; j < nrow; j++) {                m[j][i] = v[j + i*nrow];            }        }        return(m);    }    /**     * Create an object to hold predictions from a previously built CNN model.     *     * This class should not be accessed directly     *     * @param noutput The number of predicted variables     * @param values The predicted probabilities     */    public CNNClassificationModelPredict(int noutput, double[] values) {         this.noutput = noutput;        int nrow = values.length / noutput;        setPredictedRaw(vectorToMatrix(values,nrow,noutput));    }    /**     * Create an object to hold predictions from a previously built CNN model.     *     * This class should not be accessed directly. Required for the case of a single     * predicted value.     *     * @param noutput The number of predicted variables     * @param values The predicted probabilities     */    public CNNClassificationModelPredict(int noutput, double values) {         this.noutput = noutput;        setPredictedRaw(new double[][] { {values} });    }        /**     * Create an object to hold predictions from a previously built CNN model.     *     * This class should not be accessed directly     *     * @param values An array of String containing the predicted class     */    public CNNClassificationModelPredict(String[] values) {        this.predvalclass = new String[values.length];        for (int i = 0; i < values.length; i++) {            this.predvalclass[i] = values[i];        }    }    /**     * Create an object to hold predictions from a previously built CNN model.     *     * This class should not be accessed directly. Required for the      * case of a single predicted value     *     * @param values An array of String containing the predicted class     */    public CNNClassificationModelPredict(String values) {        this.predvalclass = new String[1];        this.predvalclass[1] = values;    }    /**     * Get the raw probabilities of the classification result.     *      * This class should not be accessed directly     *      * @return A 2-dimensional array containing the predicted probabilities. The rows     * contain the observations and the columns contain the predicted variables     * @see #setPredictedRaw     */    public double[][] getPredictedRaw() { return(this.predvalraw); }    /**     * Get the raw probabilities of the classification result.     *      * This class should not be accessed directly     *      * @param predicted A 2-dimensional array containing the predicted probabilities. The rows     * contain the observations and the columns contain the predicted variables     * @see #getPredictedRaw     */    public void setPredictedRaw(double[][] predicted) {         this.predvalraw = new double[predicted.length][this.noutput];        for (int i = 0; i < predicted.length; i++) {            for (int j = 0; j < this.noutput; j++) {                this.predvalraw[i][j] = predicted[i][j];            }        }    }    /**     * Get the predicted classes.     *      * This class should not be accessed directly     *     * @return An array of String containing the predicted classes     */    public String[] getPredictedClass() { return(this.predvalclass); };}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -