📄 plsregressionmodel.java
字号:
/* * Copyright (C) 2004-2007 The Chemistry Development Kit (CDK) project * * Contact: cdk-devel@lists.sourceforge.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */package org.openscience.cdk.qsar.model.R;import org.openscience.cdk.qsar.model.QSARModelException;import java.util.HashMap;/** * A modeling class that provides a PLS regression model. * * When instantiated this class ensures that the R/Java interface has been * initialized. The response and independent variables can be specified at construction * time or via the <code>setParameters</code> method. * The actual fitting procedure is carried out by <code>build</code>. * <P><b>NOTE:</b> For this class to work, you must have the * <a href="http://cran.r-project.org/src/contrib/Descriptions/pls.pcr.html" target="_top">pls.pcr</a> * package installed in your R library. * <p> * When building the PLS model, parameters such as whether cross validation is to be used, the type of * PLS algorithm etc can be specified by making calls to <code>setParameters</code>. This method can also * be used to set a new X matrix for prediction. * The following table lists the parameters that can be set and their * expected types. More detailed information is available in the R documentation. * <center> * <table border=1 cellpadding=5> * <THEAD> * <tr> * <th>Name</th><th>Java Type</th><th>Default</th><th>Notes</th> * </tr> * </thead> * <tbody> * <tr> * <td>X</td><td>Double[][]</td><td>None</td><td>Variables should be in the columns, observations in the rows</td> * </tr> * <tr> * <td>Y</td><td>Double[][]</td><td>None</td><td>Length should be equal to the rows of X. Variables should be in the columns, observations in the rows</td> * </tr> * <tr> * <td>newX</td><td>Double[][]</td><td>None</td><td>A 2D array of values to make predictions for. Variables should be in the columns, observations in the rows</td> * </tr> * <tr> * <td>ncomp</td><td>Integer[]</td><td>{1,rank(X)}</td><td>This can be an array of length 1 or 2. If there is only one element * then only the specified number of latent variables will be assessed during modeling. If 2 values are specified * then the model will use N1 to N2 latent variables where N1 and N2 are the first and second elements respectively</td> * </tr> * <tr> * <td>method</td><td>String</td><td>"SIMPLS"</td><td>The type of PLS algorithm to use (can be SIMPLS or kernelPLS)</td> * </tr> * <tr> * <td>validation</td><td>String</td><td>"none"</td><td>Indicates whether cross validation should be used. To enable cross validation set this to "CV"</td> * </tr> * <tr> * <td>grpsize</td><td>Integer</td><td>0</td><td>The group size for the "CV" validation. By default this is ignored and <code>niter</code> is used to determine the value of this argument</td> * </tr> * <tr> * <td>niter</td><td>Integer</td><td>10</td><td>The number of iterations in the cross-validation. Note that if <code>grpsize</code> is set to a non-zero value then the value of <code>niter</code> will be calculated from the value of <code>grpsize</code></td> * </tr> * <tr> * <td>nlv</td><td>Integer</td><td>None</td><td>The number of latent variables to use during prediction. By default this does not need to be specified and will be obtained from the fitted model</td> * </tr> * </tbody> * </table> * </center> * <p> * In general the <code>getFit*</code> methods provide access to results from the fit and * <code>getPredict*</code> methods provide access to results from the prediction. In case validation is specified * then the results from the CV can be obtained via the <code>getValidation*</code> methods. * The values returned correspond to the various * values returned by the <a href="http://www.maths.lth.se/help/R/.R/library/pls.pcr/html/mvr.html" target="_top">pls</a> and * <a href="http://www.maths.lth.se/help/R/.R/library/pls.pcr/html/mvr.html" target="_top">predict.mvr</a> * functions in R. * <p> * See {@link RModel} for details regarding the R and SJava environment. * * @author Rajarshi Guha * @cdk.require r-project * @cdk.module qsar * * @cdk.keyword partial least squares * @cdk.keyword PLS * @cdk.keyword regression * @deprecated */public class PLSRegressionModel extends RModel { private static int globalID = 0; private int currentID; private PLSRegressionModelFit modelfit = null; private PLSRegressionModelPredict modelpredict = null; private HashMap params = null; private int nvar = 0; private void setDefaults() { this.params.put("ncomp", new Boolean(false)); this.params.put("method", "SIMPLS"); this.params.put("validation", "none"); this.params.put("grpsize", new Integer(0)); this.params.put("niter", new Integer(10)); this.params.put("nlv", new Boolean(false)); } /** * Constructs a PLSRegressionModel object. * * The constructor simply instantiates the model ID. Dependent and independent variables * should be set via setParameters(). */ public PLSRegressionModel(){ super(); this.params = new HashMap(); this.currentID = PLSRegressionModel.globalID; PLSRegressionModel.globalID++; this.setModelName("cdkPLSRegressionModel"+this.currentID); this.setDefaults(); } /** * Constructs a PLSRegressionModel object. * * The constructor allows the user to specify the * dependent and independent variables. The length of the dependent variable * array should equal the number of rows of the independent variable matrix. If this * is not the case an exception will be thrown. * * @param xx An array of independent variables. The observations should be in the rows * and the variables should be in the columns * @param yy An array containing the dependent variable * @throws QSARModelException if the number of observations in x and y do not match */ public PLSRegressionModel(double[][] xx, double[] yy) throws QSARModelException{ super(); this.params = new HashMap(); this.currentID = PLSRegressionModel.globalID; PLSRegressionModel.globalID++; this.setModelName("cdkPLSRegressionModel"+this.currentID); this.setDefaults(); int nrow = yy.length; this.nvar = xx[0].length; if (nrow != xx.length) { throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix"); } Double[][] x = new Double[nrow][this.nvar]; Double[][] y = new Double[nrow][1]; for (int i = 0; i < nrow; i++) { y[i][1] = new Double(yy[i]); for (int j = 0; j < this.nvar; j++) x[i][j] = new Double(xx[i][j]); } params.put("X", x); params.put("Y", y); } /** * Constructs a PLSRegressionModel object. * * The constructor allows the user to specify the * dependent and independent variables. This constructor will accept a matrix * of Y values. * <p> * The length of the dependent variable * array should equal the number of rows of the independent variable matrix. If this * is not the case an exception will be thrown. * * @param xx An array of independent variables. The observations should be in the rows * and the variables should be in the columns * @param yy A 2D array containing the dependent variable * @throws QSARModelException if the number of observations in x and y do not match */ public PLSRegressionModel(double[][] xx, double[][] yy) throws QSARModelException{ super(); this.params = new HashMap(); this.currentID = PLSRegressionModel.globalID; PLSRegressionModel.globalID++; this.setModelName("cdkPLSRegressionModel"+this.currentID); this.setDefaults(); int nrow = yy.length; int ncoly = yy[0].length; this.nvar = xx[0].length; if (nrow != xx.length) { throw new QSARModelException("The number of values for the dependent variable does not match the number of rows of the design matrix"); } Double[][] x = new Double[nrow][this.nvar]; Double[][] y = new Double[nrow][ncoly]; //Double[] wts = new Double[nrow]; for (int i = 0; i < nrow; i++) { for (int j = 0; j < ncoly; j++) { y[i][j] = new Double(yy[i][j]); } } for (int i = 0; i < nrow; i++) { for (int j = 0; j < this.nvar; j++) x[i][j] = new Double(xx[i][j]); } params.put("X", x); params.put("Y", y); } protected void finalize() { revaluator.voidEval("rm("+this.getModelName()+",pos=1)"); } /** * Fits a PLS model. * * This method calls the R function to fit a PLS model * using the specified dependent and independent variables. If an error * occurs in the R session, an exception is thrown. */ public void build() throws QSARModelException { // lets do some checks in case stuff was set via setParameters() Double[][] x,y; x = (Double[][])this.params.get("X"); y = (Double[][])this.params.get("Y"); if (this.nvar == 0) this.nvar = x[0].length; else { if (y.length != x.length) { throw new QSARModelException("Number of observations does no match number of rows in the design matrix"); } } // lets build the model try { this.modelfit = (PLSRegressionModelFit)revaluator.call("buildPLS", new Object[]{ getModelName(), this.params }); } catch (Exception re) { throw new QSARModelException(re.toString()); } } /** * Uses a fitted model to predict the response for new observations. * * This function uses a previously fitted model to obtain predicted values * for a new set of observations. If the model has not been fitted prior to this * call an exception will be thrown. Use <code>setParameters</code> * to set the values of the independent variable for the new observations. */ public void predict() throws QSARModelException { if (this.modelfit == null) throw new QSARModelException("Before calling predict() you must fit the model using build()"); Double[][] newx = (Double[][])this.params.get(new String("newX")); if (newx[0].length != this.nvar) { throw new QSARModelException("Number of independent variables used for prediction must match those used for fitting"); } try { this.modelpredict = (PLSRegressionModelPredict)revaluator.call("predictPLS", new Object[]{ getModelName(), this.params }); } catch (Exception re) { throw new QSARModelException(re.toString()); } } /**
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -