⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 linearregressionmodelsummary.java

📁 化学图形处理软件
💻 JAVA
字号:
/* *  Copyright (C) 2004-2007  The Chemistry Development Kit (CDK) project * *  Contact: cdk-devel@lists.sourceforge.net * *  This program is free software; you can redistribute it and/or *  modify it under the terms of the GNU Lesser General Public License *  as published by the Free Software Foundation; either version 2.1 *  of the License, or (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU Lesser General Public License for more details. * *  You should have received a copy of the GNU Lesser General Public License *  along with this program; if not, write to the Free Software *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */package org.openscience.cdk.qsar.model.R;/** A class that represents a summary of a linear regression model. * * This class essentially wraps the result of summar.lm. As with other  * backend classes this class should not be instantiated directly by the  * user, though the various fields may be accessed with the provided  * methods. * * @author Rajarshi Guha * @cdk.require r-project * @cdk.module qsar * @deprecated  */public class LinearRegressionModelSummary {    double[] residuals;    double[][] coeff; // rows - vars, cols - stats    double rsq, adjrsq, sigma;    int df;    int numdf, dendf;    double fstat;    String[] colNames;    String[] rowNames;    private double[][] vectorToMatrix(double[] v, int nrow, int ncol) {        double[][] m = new double[nrow][ncol];        for (int i = 0; i < ncol; i++) {            for (int j = 0; j < nrow; j++) {                m[j][i] = v[j + i*nrow];            }        }        return(m);    }    /**     * Constructor for an object that wraps the return value from summary.lm.     *     * This should not be instantiated directly. The class is meant to be instantiated     * from an R session     *     * @param residuals An array of residuals     * @param coeff An array of coeffs and associated statistics     * @param coeffColNames The names of the columns for the coefficient matrix     * @param coeffRowNames The names of the rows for the coefficient matrix     * @param sigma The residual error     * @param df The degrees of freedom     * @param rsq The R^2 value     * @param adjrsq The adjusted R^2 value     * @param fstat The value of the F-statistic     */    public LinearRegressionModelSummary( double[] residuals , double coeff[],            double sigma, double rsq, double adjrsq, int df,            double[] fstat, String[] coeffRowNames, String[] coeffColNames) {        this.residuals = new double[residuals.length];        for (int i = 0; i < residuals.length; i++)            this.residuals[i] = residuals[i];                this.coeff = vectorToMatrix(coeff, coeff.length/4, 4);                this.colNames  = new String[coeffColNames.length];        this.rowNames  = new String[coeffRowNames.length];        for (int i = 0; i < coeffColNames.length; i++) this.colNames[i] = coeffColNames[i];        for (int i = 0; i < coeffRowNames.length; i++) this.rowNames[i] = coeffRowNames[i];                        this.sigma = sigma;        this.df = df;        this.rsq = rsq;        this.adjrsq = adjrsq;        this.numdf = (int)fstat[1];        this.dendf = (int)fstat[2];        this.fstat = fstat[0];            }    /**     * Return the residuals of the fit.     *     * @return A 1-dimensional array of doubles containing the      * residuals of the fit     */    public double[] getResiduals() {        return(this.residuals);    }    /**     * Returns the coefficients and associated statistics.     *     * This method will return the coefficients as well as the standard     * error in the coefficients, t-values and p-values corresponding to the      * t-values. Thus the return value is a 2D array of doubles, with rows equal     * to the number of coefficients (ie 1+num predictor variables) and 4 columns     * containing the estimated coefficients and the above statistics, in the      * order mentioned above.     *     * @return A 2-D array of doubles containing the estimated coefficients and     * associated statistics     */    public double[][] getCoeff() {        return(this.coeff);    }    /**     * Returns the R^2 value.     *     * @return The R^2 value     */    public double getRSQ() {        return(this.rsq);    }    /**     * Return the adjusted R^2 value.     *     * This statistic is generally a better indicator than plain R^2     *     * @return The adjusted R^2 value     */    public double getAdjRSQ() {        return(this.adjrsq);    }    /**      * Return the residual standard error.     *     * This method returns the residual standard error and the associated degrees     * of freedom, in a 2 element array of doubles.     *     * @return A 2 element array of doubles containing the residual error and     * DoF     */    public double[] getSigma() {        double[] ret = {this.sigma, this.df};        return( ret );    }    /**     * Returns the value of the F-statistic.     *     * @return The F-statistic     * @see #getFStatisticDF     */    public double getFStatistic() {        return(this.fstat);    }    /**     * Returns the degrees of freedom (DoF) for which the F-statistic was calculated.     *     * @return A 2 element int[]. The first element is the DoF of the numerator     * and the second element is the DoF of the denominator     * @see #getFStatistic     */    public int[] getFStatisticDF() {        int[] ret = {this.numdf, this.dendf};        return( ret );    }            }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -