📄 crystalgeometrytools.java
字号:
/* $RCSfile$ * $Author: egonw $ * $Date: 2007-01-04 18:46:10 +0100 (Thu, 04 Jan 2007) $ * $Revision: 7636 $ * * Copyright (C) 2002-2007 The Chemistry Development Kit (CDK) project * * Contact: cdk-devel@lists.sourceforge.net * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public License * as published by the Free Software Foundation; either version 2.1 * of the License, or (at your option) any later version. * All we ask is that proper credit is given for our work, which includes * - but is not limited to - adding the above copyright notice to the beginning * of your source code files, and to any copyright notice that you may distribute * with programs based on this work. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * */package org.openscience.cdk.geometry;import javax.vecmath.Point3d;import javax.vecmath.Vector3d;import org.openscience.cdk.interfaces.IAtomContainer;import org.openscience.cdk.interfaces.IAtom;import org.openscience.cdk.interfaces.ICrystal;/** * A set of static methods for working with crystal coordinates. * * @cdk.module standard * * @author Egon Willighagen <egonw@sci.kun.nl> * * @cdk.keyword fractional coordinates, crystal */public class CrystalGeometryTools { /** * Inverts three cell axes. * * @return a 3x3 matrix with the three cartesian vectors representing * the unit cell axes. The a axis is the first row. */ public static Vector3d[] calcInvertedAxes(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis) { double det = aAxis.x*bAxis.y*cAxis.z - aAxis.x*bAxis.z*cAxis.y - aAxis.y*bAxis.x*cAxis.z + aAxis.y*bAxis.z*cAxis.x + aAxis.z*bAxis.x*cAxis.y - aAxis.z*bAxis.y*cAxis.x; Vector3d[] invaxes = new Vector3d[3]; invaxes[0] = new Vector3d(); invaxes[0].x = (bAxis.y*cAxis.z - bAxis.z*cAxis.y)/det; invaxes[0].y = (bAxis.z*cAxis.x - bAxis.x*cAxis.z)/det; invaxes[0].z = (bAxis.x*cAxis.y - bAxis.y*cAxis.x)/det; invaxes[1] = new Vector3d(); invaxes[1].x = (aAxis.z*cAxis.y - aAxis.y*cAxis.z)/det; invaxes[1].y = (aAxis.x*cAxis.z - aAxis.z*cAxis.x)/det; invaxes[1].z = (aAxis.y*cAxis.x - aAxis.x*cAxis.y)/det; invaxes[2] = new Vector3d(); invaxes[2].x = (aAxis.y*bAxis.z - aAxis.z*bAxis.y)/det; invaxes[2].y = (aAxis.z*bAxis.x - aAxis.x*bAxis.z)/det; invaxes[2].z = (aAxis.x*bAxis.y - aAxis.y*bAxis.x)/det; return invaxes; } /** * @cdk.dictref blue-obelisk:convertCartesianIntoFractionalCoordinates */ public static Point3d cartesianToFractional(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis, Point3d cartPoint) { Vector3d[] invaxis = calcInvertedAxes(aAxis,bAxis,cAxis); Point3d frac = new Point3d(); frac.x = invaxis[0].x*cartPoint.x + invaxis[0].y*cartPoint.y + invaxis[0].z*cartPoint.z; frac.y = invaxis[1].x*cartPoint.x + invaxis[1].y*cartPoint.y + invaxis[1].z*cartPoint.z; frac.z = invaxis[2].x*cartPoint.x + invaxis[2].y*cartPoint.y + invaxis[2].z*cartPoint.z; return frac; } /** * Method that transforms fractional coordinates into cartesian coordinates. * * @param aAxis the a axis vector of the unit cell in cartesian coordinates * @param bAxis the b axis vector of the unit cell in cartesian coordinates * @param cAxis the c axis vector of the unit cell in cartesian coordinates * @param frac a fractional coordinate to convert * @return an array of length 3 with the cartesian coordinates of the * point defined by frac * * @cdk.keyword cartesian coordinates * @cdk.keyword fractional coordinates * * @see #cartesianToFractional(double[], double[], double[], double[]) * @deprecated */ public static double[] fractionalToCartesian(double[] aAxis, double[] bAxis, double[] cAxis, double[] frac) { double[] cart = new double[3]; cart[0] = frac[0]*aAxis[0] + frac[1]*bAxis[0] + frac[2]*cAxis[0]; cart[1] = frac[0]*aAxis[1] + frac[1]*bAxis[1] + frac[2]*cAxis[1]; cart[2] = frac[0]*aAxis[2] + frac[1]*bAxis[2] + frac[2]*cAxis[2]; return cart; } /** * @cdk.dictref blue-obelisk:convertFractionIntoCartesianCoordinates */ public static Point3d fractionalToCartesian(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis, Point3d frac) { Point3d cart = new Point3d(); cart.x = frac.x*aAxis.x + frac.y*bAxis.x + frac.z*cAxis.x; cart.y = frac.x*aAxis.y + frac.y*bAxis.y + frac.z*cAxis.y; cart.z = frac.x*aAxis.z + frac.y*bAxis.z + frac.z*cAxis.z; return cart; } /** * @deprecated */ public static Point3d fractionalToCartesian(double[] aAxis, double[] bAxis, double[] cAxis, Point3d fracPoint) { double[] frac = new double[3]; frac[0] = fracPoint.x; frac[1] = fracPoint.y; frac[2] = fracPoint.z; double[] cart = fractionalToCartesian(aAxis,bAxis,cAxis, frac); return new Point3d(cart[0], cart[1], cart[2]); } /** * Calculates cartesian vectors for unit cell axes from axes lengths and angles * between axes. * * <p>To calculate cartesian coordinates, it places the a axis on the x axes, * the b axis in the xy plane, making an angle gamma with the a axis, and places * the c axis to fullfil the remaining constraints. (See also * <a href="http://server.ccl.net/cca/documents/molecular-modeling/node4.html">the * CCL archive</a>.) * * @param alength length of the a axis * @param blength length of the b axis * @param clength length of the c axis * @param alpha angle between b and c axes in degrees * @param beta angle between a and c axes in degrees * @param gamma angle between a and b axes in degrees * @return an array of Vector3d objects with the three cartesian vectors representing * the unit cell axes. * * @cdk.keyword notional coordinates * @cdk.dictref blue-obelisk:convertNotionalIntoCartesianCoordinates */ public static Vector3d[] notionalToCartesian(double alength, double blength, double clength, double alpha, double beta, double gamma) { Vector3d[] axes = new Vector3d[3]; /* 1. align the a axis with x axis */ axes[0] = new Vector3d(); axes[0].x = alength; axes[0].y = 0.0; axes[0].z = 0.0; double toRadians = Math.PI/180.0; /* some intermediate variables */ double cosalpha = Math.cos(toRadians*alpha); double cosbeta = Math.cos(toRadians*beta); double cosgamma = Math.cos(toRadians*gamma); double singamma = Math.sin(toRadians*gamma); /* 2. place the b is in xy plane making a angle gamma with a */ axes[1] = new Vector3d(); axes[1].x = blength*cosgamma; axes[1].y = blength*singamma; axes[1].z = 0.0; /* 3. now the c axis, with more complex maths */ axes[2] = new Vector3d(); double volume = alength * blength * clength * Math.sqrt(1.0 - cosalpha*cosalpha - cosbeta*cosbeta - cosgamma*cosgamma + 2.0*cosalpha*cosbeta*cosgamma); axes[2].x = clength*cosbeta; axes[2].y = clength*(cosalpha-cosbeta*cosgamma)/singamma; axes[2].z = volume/(alength*blength*singamma); return axes; } /** * @cdk.dictref blue-obelisk:convertCartesianIntoNotionalCoordinates */ public static double[] cartesianToNotional(Vector3d aAxis, Vector3d bAxis, Vector3d cAxis) { double[] notionalCoords = new double[6]; notionalCoords[0] = aAxis.length(); notionalCoords[1] = bAxis.length(); notionalCoords[2] = cAxis.length(); notionalCoords[3] = bAxis.angle(cAxis)*180.0/Math.PI; notionalCoords[4] = aAxis.angle(cAxis)*180.0/Math.PI; notionalCoords[5] = aAxis.angle(bAxis)*180.0/Math.PI; return notionalCoords; } /** * Determines if this model contains fractional (crystal) coordinates. * * @return boolean indication that 3D coordinates are available */ public static boolean hasCrystalCoordinates(IAtomContainer container) { java.util.Iterator atoms = container.atoms(); while (atoms.hasNext()) { if (((IAtom)atoms.next()).getFractionalPoint3d() == null) { return false; } } return true; } /** * Creates cartesian coordinates for all Atoms in the Crystal. */ public static void fractionalToCartesian(ICrystal crystal) { java.util.Iterator atoms = crystal.atoms(); Vector3d aAxis = crystal.getA(); Vector3d bAxis = crystal.getB(); Vector3d cAxis = crystal.getC(); while (atoms.hasNext()) { IAtom atom = (IAtom)atoms.next(); Point3d fracPoint = atom.getFractionalPoint3d(); if (fracPoint != null) { atom.setPoint3d(fractionalToCartesian(aAxis,bAxis,cAxis, fracPoint)); } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -