⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cnn_4.r

📁 化学图形处理软件
💻 R
字号:
############################################## CNN classification fit/predict converters#############################################cnnClassFitConverter <-function(obj,...) {    noutput <- ncol(obj$fitted)    nobs <- nrow(obj$fitted)    if ('Hessian' %in% names(obj)) {        .JNew('org.openscience.cdk.qsar.model.R.CNNClassificationModelFit',        noutput,nobs, obj$wts, obj$fitted, obj$residuals, obj$value, obj$Hessian)    } else {        .JNew('org.openscience.cdk.qsar.model.R.CNNClassificationModelFit',        noutput, nobs,obj$wts, obj$fitted, obj$residuals, obj$value)    }}cnnClassPredictConverter <-function(obj,...) {    # The obj we get is actually a 'matrix' but we set its class    # to cnnclsprediction so that SJava would send it specifically    # to us. So we should convert obj back to class 'matrix' so     # that SJava can send it correctly to the Java side    if (class(obj[1]) == 'numeric') {        class(obj) <- 'matrix'        .JNew('org.openscience.cdk.qsar.model.R.CNNClassificationModelPredict',        ncol(obj), obj)    } else if (class(obj[1]) == 'character') {        class(obj) <- 'character'        .JNew('org.openscience.cdk.qsar.model.R.CNNClassificationModelPredict', obj)    }}buildCNNClass <- function(modelname, params) {    library(nnet)    paramlist <- hashmap.to.list(params)    attach(paramlist)    x <- matrix(unlist(x), nrow=length(x), byrow=TRUE)    y <- factor(unlist(y)) # y will come in as a single vector    if (nrow(x) != length(y)) { stop('The number of observations in x & y dont match') }    ninput <- ncol(x)    nhidden <- size    if (length(levels(y)) == 2) noutput <- 1    else noutput = length(levels(y))    nwt <- (ninput*nhidden) + (nhidden*noutput) + nhidden + noutput    if (class(weights) == 'logical' && !weights) weights <- rep(1, length(y))    if (class(subset) == 'logical' && !subset) subset <- 1:length(y)    if (class(Wts) == 'logical' && !Wts) { Wts <- runif(nwt) }    if (class(mask) == 'logical' && !mask) { mask <- rep(TRUE, nwt) }        assign(modelname,     nnet(y~., data=data.frame(y=y,x=x),weights=weights,size=size,Wts=Wts,mask=mask,linout=linout,    softmax=softmax,censored=censored,skip=skip,rang=rang,    decay=decay,maxit=maxit,Hess=Hess,trace=trace,MaxNWts=MaxNWts,    abstol=abstol,reltol=reltol), pos=1)    detach(paramlist)    get(modelname)}predictCNNClass <- function(modelname, params) {    # Since buildCNNClass should have been called before this    # we dont bother loading the nnet library    paramlist <- hashmap.to.list(params)    attach(paramlist)    newx <- data.frame( y=1, x=matrix(unlist(newdata), nrow=length(newdata), byrow=TRUE) )    names(newx) <- get(modelname)$coefnames    if (type == '' || !(type %in% c('raw','class')) ) {         type = 'raw'    }     preds <- predict( get(modelname), newdata=newx, type=type);    class(preds) <- 'cnnclsprediction'    detach(paramlist)    preds}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -