⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 helper.r

📁 化学图形处理软件
💻 R
字号:
##  Copyright (C) 2004-2007  The Chemistry Development Kit (CDK) project##  Contact: cdk-devel@lists.sourceforge.net##  This program is free software; you can redistribute it and/or#  modify it under the terms of the GNU Lesser General Public License#  as published by the Free Software Foundation; either version 2.1#  of the License, or (at your option) any later version.##  This program is distributed in the hope that it will be useful,#  but WITHOUT ANY WARRANTY; without even the implied warranty of#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the#  GNU Lesser General Public License for more details.##  You should have received a copy of the GNU Lesser General Public License#  along with this program; if not, write to the Free Software#  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.# load some common packages that will always be installedlibrary(MASS)library(nnet)# some helper functionssaveModel <- function(modelname, filename) {    resp <- try( do.call('save',list(modelname,file=filename)), silent=TRUE )}loadModel <- function(filename) {    modelname <- load(filename, .GlobalEnv)    list(model=get(modelname) , name=modelname)}unserializeModel <- function(modelstr, modelname) {    zzz <- paste(paste(modelstr, sep='', collapse='\n'), '\n', sep='', collapse='')    assign(modelname, unserialize(zzz), pos=1)    list(model=get(modelname) , name=modelname)}buildLM <- function(modelname, paramlist) {    attach(paramlist)    # assumes y ~ all columns of x    d <- data.frame(y=y,x)    assign(modelname, lm(y~., d, weights=weights), pos=1)    detach(paramlist)    get(modelname)}predictLM <- function( modelname, paramlist) {    attach(paramlist)    newx <- data.frame( newdata )    names(newx) <- names(get(modelname)$coef)[-1]    if (interval == '' || !(interval %in% c('confidence','prediction')) ) {         interval = 'confidence'    }     preds <- predict( get(modelname), newx, se.fit = TRUE, interval=interval);    detach(paramlist)    preds}buildCNN <-  function(modelname, paramlist) {    attach(paramlist)    if (nrow(x) != nrow(y)) {         stop('The number of observations in x & y dont match')     }    ninput <- ncol(x)    nhidden <- size    noutput <- ncol(y)    nwt <- (ninput*nhidden) + (nhidden*noutput) + nhidden + noutput        if (class(weights) == 'logical' && !weights) weights <- rep(1, nrow(y))    if (class(subset) == 'logical' && !subset) subset <- 1:nrow(y)    if (class(Wts) == 'logical' && !Wts) { Wts <- runif(nwt) }    if (class(mask) == 'logical' && !mask) { mask <- rep(TRUE, nwt) }    assign(modelname,     nnet(x,y,weights=weights,size=size,Wts=Wts,mask=mask,linout=linout,    entropy=entropy,softmax=softmax,censored=censored,skip=skip,rang=rang,    decay=decay,maxit=maxit,Hess=Hess,trace=trace,MaxNWts=MaxNWts,    abstol=abstol,reltol=reltol), pos=1)    detach(paramlist)    get(modelname)}buildCNNClass <- function(modelname, paramlist) {    attach(paramlist)    y <- factor(unlist(y)) # y will come in as a single vector    if (nrow(x) != length(y)) { stop('The number of observations in x & y dont match') }    ninput <- ncol(x)    nhidden <- size    if (length(levels(y)) == 2) noutput <- 1    else noutput = length(levels(y))    nwt <- (ninput*nhidden) + (nhidden*noutput) + nhidden + noutput    if (class(weights) == 'logical' && !weights) weights <- rep(1, length(y))    if (class(subset) == 'logical' && !subset) subset <- 1:length(y)    if (class(Wts) == 'logical' && !Wts) { Wts <- runif(nwt) }    if (class(mask) == 'logical' && !mask) { mask <- rep(TRUE, nwt) }        assign(modelname,     nnet(y~., data=data.frame(y=y,x=x),weights=weights,size=size,Wts=Wts,mask=mask,linout=linout,    softmax=softmax,censored=censored,skip=skip,rang=rang,    decay=decay,maxit=maxit,Hess=Hess,trace=trace,MaxNWts=MaxNWts,    abstol=abstol,reltol=reltol), pos=1)    detach(paramlist)    get(modelname)}predictCNN <- function(modelname, paramlist) {    attach(paramlist)    newx <- data.frame( newdata )    names(newx) <- get(modelname)$coefnames    if (type == '' || !(type %in% c('raw','class')) ) {         type = 'raw'    }    preds <- predict( get(modelname), newdata=newx, type=type);    detach(paramlist)    preds}predictCNNClass <- function(modelname, paramlist) {    attach(paramlist)    newx <- data.frame( newdata )    names(newx) <- get(modelname)$coefnames    if (type == '' || !(type %in% c('raw','class')) ) {         type = 'raw'    }    preds <- predict( get(modelname), newdata=newx, type=type);    detach(paramlist)    preds}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -