📄 lm_2.r
字号:
############################################## Linear regression fit/predict converters#############################################lmFitConverter <-function(obj,...){ .JNew('org.openscience.cdk.qsar.model.R.LinearRegressionModelFit', obj$coefficients, obj$residuals, obj$fitted, obj$rank, obj$df.residual)}lmPredictConverter <- function(preds,...) { .JNew('org.openscience.cdk.qsar.model.R.LinearRegressionModelPredict', preds$fit[,1], preds$se.fit, preds$fit[,2], preds$fit[,3], preds$df, preds$residual.scale)}lmSummaryConverter <- function(sumry,...) { .JNew('org.openscience.cdk.qsar.model.R.LinearRegressionModelSummary', sumry$residuals, sumry$coeff, sumry$sigma, sumry$r.squared, sumry$adj.r.squared, sumry$df[2], sumry$fstatistic, attr(sumry$coeff, 'dimnames')[[1]], attr(sumry$coeff, 'dimnames')[[2]])}buildLM <- function(modelname, params) { # params is a java.util.HashMap containing the parameters # we need to extract them and add them to this environment paramlist <- hashmap.to.list(params) attach(paramlist) # x will come in as a double[][] x <- matrix(unlist(x), nrow=length(x), byrow=TRUE) # assumes y ~ all columns of x d <- data.frame(y=y,x) assign(modelname, lm(y~., d, weights=weights), pos=1) detach(paramlist) get(modelname)}predictLM <- function( modelname, params) { # params is a java.util.HashMap containing the parameters # we need to extract them and add them to this environment paramlist <- hashmap.to.list(params) attach(paramlist) newx <- data.frame( matrix(unlist(newdata), nrow=length(newdata), byrow=TRUE) ) names(newx) <- names(get(modelname)$coef)[-1] if (interval == '' || !(interval %in% c('confidence','prediction')) ) { interval = 'confidence' } preds <- predict( get(modelname), newx, se.fit = TRUE, interval=interval); class(preds) <- 'lmregprediction' detach(paramlist) preds}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -