📄 cnn_3.r
字号:
############################################## CNN regression fit/predict converters#############################################cnnSummaryConverter <- function(obj,...){ .JNew('org.openscience.cdk.qsar.model.R.CNNRegressionModelSummary', obj$n, obj$entropy, obj$softmax, obj$censored, obj$value, obj$residuals)}cnnFitConverter <-function(obj,...) { noutput <- ncol(obj$fitted) nobs <- nrow(obj$fitted) if ('Hessian' %in% names(obj)) { .JNew('org.openscience.cdk.qsar.model.R.CNNRegressionModelFit', noutput,nobs, obj$wts, obj$fitted, obj$residuals, obj$value, obj$Hessian) } else { .JNew('org.openscience.cdk.qsar.model.R.CNNRegressionModelFit', noutput, nobs,obj$wts, obj$fitted, obj$residuals, obj$value) }}cnnPredictConverter <-function(obj,...) { # The obj we get is actually a 'matrix' but we set its class # to cnnregprediction so that SJava would send it specifically # to us. So we should convert obj back to class 'matrix' so # that SJava can send it correctly to the Java side class(obj) <- 'matrix' .JNew('org.openscience.cdk.qsar.model.R.CNNRegressionModelPredict', ncol(obj), obj)}buildCNN <- function(modelname, params) { library(nnet) paramlist <- hashmap.to.list(params) attach(paramlist) x <- matrix(unlist(x), nrow=length(x), byrow=TRUE) y <- matrix(unlist(y), nrow=length(y), byrow=TRUE) if (nrow(x) != nrow(y)) { stop('The number of observations in x & y dont match') } ninput <- ncol(x) nhidden <- size noutput <- ncol(y) nwt <- (ninput*nhidden) + (nhidden*noutput) + nhidden + noutput if (class(weights) == 'logical' && !weights) weights <- rep(1, nrow(y)) if (class(subset) == 'logical' && !subset) subset <- 1:nrow(y) if (class(Wts) == 'logical' && !Wts) { Wts <- runif(nwt) } if (class(mask) == 'logical' && !mask) { mask <- rep(TRUE, nwt) } assign(modelname, nnet(x,y,weights=weights,size=size,Wts=Wts,mask=mask,linout=linout, entropy=entropy,softmax=softmax,censored=censored,skip=skip,rang=rang, decay=decay,maxit=maxit,Hess=Hess,trace=trace,MaxNWts=MaxNWts, abstol=abstol,reltol=reltol), pos=1) detach(paramlist) get(modelname)}predictCNN <- function(modelname, params) { # Since buildCNN should have been called before this # we dont bother loading the nnet library paramlist <- hashmap.to.list(params) attach(paramlist) newx <- data.frame( matrix(unlist(newdata), nrow=length(newdata), byrow=TRUE) ) names(newx) <- get(modelname)$coefnames if (type == '' || !(type %in% c('raw','class')) ) { type = 'raw' } preds <- predict( get(modelname), newdata=newx, type=type); class(preds) <- 'cnnregprediction' detach(paramlist) preds}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -