📄 lsqr.txt
字号:
360 1.000000957E-01 1.827111502E-09 1.98E-12 4.84E-08 9.59E+00 2.34E+09 6.4E-11 370 1.000000957E-01 1.827111494E-09 1.98E-12 9.30E-09 9.72E+00 2.37E+09 6.4E-11 380 1.000000957E-01 1.827111494E-09 1.98E-12 4.49E-10 9.89E+00 2.41E+09 6.4E-11 390 1.000000957E-01 1.827111494E-09 1.98E-12 4.16E-09 1.00E+01 2.44E+09 6.4E-11 400 1.000000955E-01 1.827111493E-09 1.98E-12 3.51E-08 1.01E+01 2.47E+09 6.4E-11 410 1.000000315E-01 1.827111128E-09 1.98E-12 1.12E-06 1.02E+01 2.50E+09 6.4E-11 420 1.000000279E-01 1.827111108E-09 1.98E-12 9.58E-11 1.04E+01 2.54E+09 6.4E-11 430 1.000000279E-01 1.827111108E-09 1.98E-12 6.65E-12 1.05E+01 2.57E+09 6.4E-11 440 1.000000279E-01 1.827111108E-09 1.98E-12 2.03E-12 1.06E+01 2.59E+09 6.4E-11 446 1.000000279E-01 1.827111108E-09 1.98E-12 2.04E-15 1.07E+01 2.62E+09 6.4E-11 447 1.000000279E-01 1.827111108E-09 1.98E-12 1.73E-15 1.07E+01 2.62E+09 6.4E-11 450 1.000000279E-01 1.827111108E-09 1.98E-12 1.76E-13 1.07E+01 2.62E+09 6.4E-11 460 1.000000279E-01 1.827111108E-09 1.98E-12 2.38E-13 1.08E+01 2.65E+09 6.4E-11 465 1.000000279E-01 1.827111108E-09 1.98E-12 1.75E-16 1.09E+01 2.67E+09 6.4E-11 Exit LSQR. istop = 3 itn = 465 Exit LSQR. Anorm = 1.09390E+01 Acond = 2.67131E+09 Exit LSQR. bnorm = 9.20536E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-09 Arnorm = 3.50479E-24 Exit LSQR. max dx = 9.1E+02 occurred at itn 1 Exit LSQR. = 5.0E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-12 norm(x) = 1.827E+03 norm(r) = 8.25665942E-13 = rho1 norm(A'r) = 6.491E-13 = sigma1 norm(s) = 8.257E-01 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711129E-09 = rho2 norm(Abar'rbar) = 6.491E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 3.949E-17 (Ax = b) test2 = 7.186E-02 (least-squares) test3 = 3.247E-05 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 1.02E-09 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 7 1.00E-13 ) Condition no. = 6.1035E+09 Residual function = 8.463025879E-16 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 4.8E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-13 wantse = F atol = 3.18E-16 conlim = 6.10E+12 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 8.802779981E+02 1.00E+00 9.46E-04 1 -2.422195397E+01 3.783589553E+02 4.30E-01 6.05E-01 9.23E-01 1.00E+00 6.4E-01 2 -2.477913716E+01 2.170796658E+02 2.47E-01 3.45E-01 1.18E+00 2.20E+00 3.3E-01 3 -1.776850890E+01 1.378525121E+02 1.57E-01 2.27E-01 1.32E+00 3.69E+00 2.0E-01 4 -8.448828545E+00 9.115137842E+01 1.04E-01 1.57E-01 1.40E+00 5.56E+00 1.3E-01 5 7.462713431E-01 6.101548604E+01 6.93E-02 1.10E-01 1.44E+00 7.99E+00 8.9E-02 6 8.324225295E+00 4.071186937E+01 4.62E-02 7.68E-02 1.47E+00 1.13E+01 6.0E-02 7 1.328456787E+01 2.681918944E+01 3.05E-02 5.31E-02 1.48E+00 1.60E+01 4.0E-02 8 1.508697435E+01 1.732799020E+01 1.97E-02 3.61E-02 1.48E+00 2.29E+01 2.7E-02 9 1.370778590E+01 1.092432663E+01 1.24E-02 2.40E-02 1.49E+00 3.32E+01 1.7E-02 10 9.648835708E+00 6.689826212E+00 7.60E-03 1.78E-02 1.49E+00 4.93E+01 1.1E-02 20 -1.212824859E+01 6.304636182E-01 7.16E-04 2.12E-03 2.31E+00 5.05E+02 1.3E-03 30 -1.324951967E+01 1.349693628E-01 1.53E-04 8.76E-03 2.73E+00 2.02E+03 3.2E-04 40 -7.972289743E+00 3.034724694E-02 3.45E-05 2.64E-02 3.17E+00 9.50E+03 7.5E-05 50 -3.760582449E+00 7.471160118E-03 8.49E-06 1.44E-01 3.50E+00 2.77E+04 2.3E-05 60 -3.516869244E+00 5.772948771E-03 6.56E-06 5.77E-05 3.92E+00 3.19E+04 2.0E-05 70 -5.570579103E-01 1.366150384E-03 1.55E-06 3.55E-06 4.19E+00 9.77E+04 5.7E-06 80 -2.351225472E-01 1.235080581E-03 1.40E-06 5.97E-03 4.44E+00 1.83E+05 4.1E-06 90 1.155130277E+00 2.298013456E-04 2.61E-07 5.88E-05 4.78E+00 3.90E+05 1.2E-06 100 1.155188322E+00 2.296980456E-04 2.61E-07 3.09E-05 5.00E+00 4.08E+05 1.2E-06 110 1.195102232E+00 2.188279056E-04 2.49E-07 1.46E-02 5.21E+00 7.30E+05 9.3E-07 120 1.581337623E+00 2.242424742E-05 2.55E-08 3.14E-05 5.45E+00 2.08E+06 1.8E-07 130 1.581421764E+00 2.238624925E-05 2.54E-08 1.09E-05 5.74E+00 2.19E+06 1.8E-07 140 1.581421505E+00 2.238622182E-05 2.54E-08 9.24E-06 5.93E+00 2.26E+06 1.8E-07 150 1.529094130E+00 2.103866096E-05 2.39E-08 5.31E-04 6.11E+00 6.27E+06 1.1E-07 160 1.473983854E+00 1.951748521E-05 2.22E-08 8.32E-03 6.29E+00 8.93E+06 8.7E-08 170 1.134264711E+00 7.964140066E-07 9.05E-10 2.30E-05 6.52E+00 1.84E+07 1.2E-08 180 1.134264723E+00 7.964053359E-07 9.05E-10 1.45E-06 6.69E+00 1.88E+07 1.2E-08 190 1.134261248E+00 7.959773875E-07 9.04E-10 6.48E-06 6.85E+00 1.93E+07 1.2E-08 200 1.134261015E+00 7.959772113E-07 9.04E-10 3.48E-06 7.08E+00 1.99E+07 1.2E-08 210 1.134260117E+00 7.959766870E-07 9.04E-10 1.35E-06 7.25E+00 2.04E+07 1.2E-08 220 1.117831697E+00 7.860260040E-07 8.93E-10 3.95E-05 7.41E+00 5.95E+07 7.3E-09 230 1.117807695E+00 7.860113715E-07 8.93E-10 1.65E-05 7.61E+00 6.11E+07 7.3E-09 240 5.873307528E-01 3.254190657E-07 3.70E-10 2.84E-03 7.75E+00 3.38E+08 2.0E-09 250 4.790469911E-01 3.745770068E-08 4.26E-11 9.59E-03 7.89E+00 3.76E+08 6.6E-10 260 4.775942228E-01 2.326428255E-09 2.64E-12 2.53E-03 8.09E+00 3.86E+08 1.6E-10 270 4.775939951E-01 2.278945208E-09 2.59E-12 4.89E-07 8.22E+00 3.93E+08 1.6E-10 280 4.775939951E-01 2.278944830E-09 2.59E-12 3.33E-07 8.38E+00 4.00E+08 1.6E-10 290 4.775939949E-01 2.278943427E-09 2.59E-12 5.85E-05 8.51E+00 4.07E+08 1.6E-10 300 4.775939419E-01 2.278532802E-09 2.59E-12 4.29E-08 8.70E+00 4.15E+08 1.6E-10 310 4.775939238E-01 2.278455786E-09 2.59E-12 4.36E-05 8.81E+00 4.21E+08 1.6E-10 320 4.775939236E-01 2.278455067E-09 2.59E-12 3.09E-07 8.95E+00 4.28E+08 1.6E-10 330 4.775939236E-01 2.278455064E-09 2.59E-12 4.72E-09 9.11E+00 4.35E+08 1.6E-10 340 4.775939236E-01 2.278455064E-09 2.59E-12 1.32E-10 9.24E+00 4.41E+08 1.6E-10 350 4.775938894E-01 2.278454963E-09 2.59E-12 8.09E-08 9.36E+00 4.47E+08 1.6E-10 360 4.775906183E-01 2.278445339E-09 2.59E-12 7.79E-05 9.49E+00 4.84E+08 1.6E-10 370 4.775900584E-01 2.278443691E-09 2.59E-12 3.10E-07 9.66E+00 4.97E+08 1.6E-10 380 4.775900563E-01 2.278443685E-09 2.59E-12 7.64E-09 9.78E+00 5.03E+08 1.6E-10 390 4.775894205E-01 2.278441809E-09 2.59E-12 1.17E-05 9.88E+00 5.14E+08 1.5E-10 400 4.775893873E-01 2.278441711E-09 2.59E-12 2.78E-08 1.00E+01 5.23E+08 1.5E-10 410 4.775893853E-01 2.278441705E-09 2.59E-12 6.18E-10 1.01E+01 5.28E+08 1.5E-10 420 4.738247766E-01 2.267128787E-09 2.58E-12 2.58E-05 1.03E+01 6.27E+09 4.5E-11 430 4.737554939E-01 2.266920057E-09 2.58E-12 3.81E-05 1.04E+01 6.42E+09 4.5E-11 440 3.006921773E-01 1.665792869E-09 1.89E-12 1.11E-03 1.05E+01 4.39E+10 1.5E-11 450 1.000150316E-01 1.832971163E-10 2.08E-13 8.54E-06 1.06E+01 6.49E+10 4.1E-12 460 1.000102069E-01 1.831172599E-10 2.08E-13 6.98E-04 1.07E+01 6.55E+10 4.1E-12 470 1.000040779E-01 1.828885385E-10 2.08E-13 1.34E-05 1.09E+01 6.64E+10 4.0E-12 480 9.999935322E-02 1.827120292E-10 2.08E-13 1.07E-06 1.10E+01 6.70E+10 4.0E-12 490 9.999935276E-02 1.827120120E-10 2.08E-13 6.43E-07 1.11E+01 6.76E+10 4.0E-12 500 9.999933151E-02 1.827111813E-10 2.08E-13 1.10E-08 1.12E+01 6.85E+10 4.0E-12 510 9.999933151E-02 1.827111813E-10 2.08E-13 2.40E-10 1.13E+01 6.91E+10 4.0E-12 520 9.999933151E-02 1.827111813E-10 2.08E-13 3.45E-09 1.14E+01 6.96E+10 4.0E-12 530 9.999933151E-02 1.827111813E-10 2.08E-13 2.00E-09 1.15E+01 7.04E+10 4.0E-12 540 9.999933151E-02 1.827111813E-10 2.08E-13 2.70E-10 1.16E+01 7.10E+10 4.0E-12 550 9.999933151E-02 1.827111813E-10 2.08E-13 2.55E-11 1.18E+01 7.18E+10 4.0E-12 560 9.999933151E-02 1.827111813E-10 2.08E-13 2.55E-10 1.18E+01 7.23E+10 4.0E-12 570 9.999933150E-02 1.827111813E-10 2.08E-13 7.79E-09 1.19E+01 7.29E+10 4.0E-12 580 9.999933150E-02 1.827111813E-10 2.08E-13 1.05E-10 1.21E+01 7.37E+10 4.0E-12 590 9.999933131E-02 1.827111812E-10 2.08E-13 4.53E-07 1.22E+01 7.42E+10 4.0E-12 600 9.999920089E-02 1.827111108E-10 2.08E-13 6.55E-12 1.23E+01 7.50E+10 4.0E-12 610 9.999920089E-02 1.827111108E-10 2.08E-13 1.98E-12 1.24E+01 7.55E+10 4.0E-12 620 9.999920090E-02 1.827111108E-10 2.08E-13 2.29E-10 1.25E+01 7.62E+10 4.0E-12 630 9.999920090E-02 1.827111108E-10 2.08E-13 1.76E-09 1.26E+01 7.67E+10 4.0E-12 640 9.999920091E-02 1.827111108E-10 2.08E-13 5.31E-08 1.27E+01 7.75E+10 4.0E-12 650 9.999920091E-02 1.827111108E-10 2.08E-13 5.82E-15 1.28E+01 7.80E+10 4.0E-12 660 9.999920091E-02 1.827111108E-10 2.08E-13 2.15E-13 1.29E+01 7.85E+10 4.0E-12 670 9.999920091E-02 1.827111108E-10 2.08E-13 6.57E-11 1.29E+01 7.90E+10 4.0E-12 680 9.999920091E-02 1.827111108E-10 2.08E-13 1.05E-13 1.31E+01 7.98E+10 4.0E-12 690 9.999920091E-02 1.827111108E-10 2.08E-13 7.40E-13 1.31E+01 8.02E+10 4.0E-12 700 9.999920091E-02 1.827111108E-10 2.08E-13 8.44E-13 1.32E+01 8.07E+10 4.0E-12 704 9.999920091E-02 1.827111108E-10 2.08E-13 2.95E-15 1.33E+01 8.12E+10 4.0E-12 705 9.999920091E-02 1.827111108E-10 2.08E-13 1.08E-15 1.33E+01 8.12E+10 4.0E-12 707 9.999920091E-02 1.827111108E-10 2.08E-13 5.49E-16 1.33E+01 8.12E+10 4.0E-12 708 9.999920091E-02 1.827111108E-10 2.08E-13 1.27E-15 1.33E+01 8.12E+10 4.0E-12 709 9.999920091E-02 1.827111108E-10 2.08E-13 1.31E-15 1.33E+01 8.14E+10 4.0E-12 710 9.999920091E-02 1.827111108E-10 2.08E-13 9.31E-16 1.33E+01 8.15E+10 4.0E-12 711 9.999920091E-02 1.827111108E-10 2.08E-13 1.31E-15 1.34E+01 8.15E+10 4.0E-12 720 9.999920091E-02 1.827111108E-10 2.08E-13 1.04E-11 1.34E+01 8.21E+10 4.0E-12 726 9.999920091E-02 1.827111108E-10 2.08E-13 2.51E-15 1.35E+01 8.24E+10 4.0E-12 727 9.999920091E-02 1.827111108E-10 2.08E-13 6.83E-16 1.35E+01 8.24E+10 4.0E-12 728 9.999920091E-02 1.827111108E-10 2.08E-13 1.25E-15 1.35E+01 8.25E+10 4.0E-12 730 9.999920091E-02 1.827111108E-10 2.08E-13 2.31E-15 1.35E+01 8.26E+10 4.0E-12 731 9.999920091E-02 1.827111108E-10 2.08E-13 2.01E-15 1.35E+01 8.26E+10 4.0E-12 733 9.999920091E-02 1.827111108E-10 2.08E-13 4.60E-16 1.36E+01 8.29E+10 4.0E-12 734 9.999920091E-02 1.827111108E-10 2.08E-13 6.81E-16 1.36E+01 8.29E+10 4.0E-12 735 9.999920091E-02 1.827111108E-10 2.08E-13 5.87E-17 1.36E+01 8.29E+10 4.0E-12 Exit LSQR. istop = 3 itn = 735 Exit LSQR. Anorm = 1.35788E+01 Acond = 8.28834E+10 Exit LSQR. bnorm = 8.80278E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-10 Arnorm = 1.45752E-25 Exit LSQR. max dx = 8.6E+02 occurred at itn 1 Exit LSQR. = 4.7E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-13 norm(x) = 1.827E+03 norm(r) = 1.18832453E-12 = rho1 norm(A'r) = 9.921E-13 = sigma1 norm(s) = 1.188E+01 norm(x,s) = 1.827E+03 norm(rbar) = 1.82714975E-10 = rho2 norm(Abar'rbar) = 9.921E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 4.626E-17 (Ax = b) test2 = 6.148E-02 (least-squares) test3 = 3.999E-04 (damped least-squares) Solution x: 1 0.999992E-01 2 0.200000 3 0.300000 4 0.399999 5 0.500001 6 0.600002 7 0.700001 8 0.800001 LSQR appears to be successful. Relative error in x = 3.04E-08 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 2000 40 2 1.00E-08 ) Condition no. = 6.2500E+02 Residual function = 1.343553250E-12 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 4.8E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 2000 columns damp = 1.00000000000000E-08 wantse = F atol = 3.18E-16 conlim = 6.25E+05 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.249337798E+03 1.00E+00 6.63E-04 1 -2.402620751E+01 4.498264693E+02 3.60E-01 7.05E-01 8.88E-01 1.00E+00 5.5E-01 2 -2.022218888E+01 2.366648551E+02 1.89E-01 4.41E-01 1.18E+00 2.12E+00 2.9E-01 3 -1.368214317E+01 1.468584013E+02 1.18E-01 3.23E-01 1.39E+00 3.40E+00 1.9E-01 4 -8.500660046E+00
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -