⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsqr.txt

📁 比较经典的求解线性方程的方法 原理是C.C. Paige and M.A. Sauders等你提出的
💻 TXT
📖 第 1 页 / 共 5 页
字号:
   250  1.092330280E-01  3.162277661E+01  3.59E-02  3.20E-14  7.99E+00  8.13E+07  4.1E-05   260  1.092242657E-01  3.162277661E+01  3.59E-02  4.21E-14  8.12E+00  8.27E+07  4.1E-05   265  1.091385334E-01  3.162277661E+01  3.59E-02  2.52E-16  8.24E+00  8.39E+07  4.1E-05 Exit  LSQR.       istop  = 3               itn    =     265 Exit  LSQR.       Anorm  = 8.24247E+00     Acond  = 8.38980E+07 Exit  LSQR.       bnorm  = 8.80846E+02     xnorm  = 1.82711E+03 Exit  LSQR.       rnorm  = 3.16228E+01     Arnorm = 6.56943E-14 Exit  LSQR.       max dx = 8.6E+02 occurred at itn        1 Exit  LSQR.              = 4.7E-01*xnorm Exit  LSQR.       A damped least-squares solution was found, given atol Enter xcheck.     Does x solve Ax = b, etc?    damp            = 1.000E-07    norm(x)         = 1.827E+03    norm(r)         = 3.16227766E+01 = rho1    norm(A'r)       = 1.834E-11      = sigma1    norm(s)         = 3.162E+08    norm(x,s)       = 3.162E+08    norm(rbar)      = 3.16227766E+01 = rho2    norm(Abar'rbar) = 5.557E-13      = sigma2    inform          = 2    tol             = 1.490E-08    test1           = 1.984E-03 (Ax = b)    test2           = 7.038E-14 (least-squares)    test3           = 2.132E-15 (damped least-squares) Solution  x:     1  0.109139         2  0.205252         3  0.303031         4  0.398222         5  0.496653         6  0.590571         7  0.687856         8  0.784782     LSQR  appears to be successful. Relative error in  x  =  2.81E-04 -------------------------------------------------------------------- Least-Squares Test Problem      P( 1000 1000   40    2    1.00E-08 ) Condition no. =  6.2500E+02     Residual function =  1.351130091E-12 -------------------------------------------------------------------- Enter Acheck.     Test of Aprod for LSQR and CRAIG Aprod seems OK.   Relative error =   1.3E-16 Enter LSQR.       Least-squares solution of  Ax = b The matrix  A  has   1000 rows   and   1000 columns damp   =  1.00000000000000E-08   wantse =         F atol   =  3.18E-16               conlim =  6.25E+05 btol   =  3.18E-16               itnlim =      8200   Itn       x(1)           Function     Compatible   LS     Norm Abar Cond Abar alfa_opt     0  0.000000000E+00  1.250358806E+03  1.00E+00  6.63E-04     1 -1.569523708E+01  4.497539700E+02  3.60E-01  7.06E-01  8.88E-01  1.00E+00  5.5E-01     2  2.895287270E+00  2.360568875E+02  1.89E-01  4.42E-01  1.18E+00  2.12E+00  2.9E-01     3  6.914168784E+00  1.462934678E+02  1.17E-01  3.24E-01  1.39E+00  3.40E+00  1.9E-01     4  1.929180742E+00  9.956862892E+01  7.96E-02  2.55E-01  1.56E+00  4.82E+00  1.4E-01     5 -4.030073311E+00  7.189983046E+01  5.75E-02  2.09E-01  1.70E+00  6.39E+00  1.1E-01     6 -8.170857369E+00  5.403308925E+01  4.32E-02  1.76E-01  1.83E+00  8.09E+00  8.3E-02     7 -1.028185061E+01  4.175446117E+01  3.34E-02  1.50E-01  1.93E+00  9.92E+00  6.8E-02     8 -1.086059048E+01  3.291017600E+01  2.63E-02  1.30E-01  2.02E+00  1.19E+01  5.6E-02     9 -1.044238556E+01  2.630121592E+01  2.10E-02  1.14E-01  2.09E+00  1.40E+01  4.7E-02    10 -9.437438588E+00  2.121469253E+01  1.70E-02  9.96E-02  2.15E+00  1.63E+01  3.9E-02    20  8.996819441E-01  2.390187891E+00  1.91E-03  2.15E-02  2.55E+00  6.46E+01  7.2E-03    30  9.270667113E-01  1.748092040E-01  1.40E-04  1.86E-02  3.15E+00  2.80E+02  1.0E-03    40  4.459333261E-01  2.036524001E-02  1.63E-05  2.88E-03  3.66E+00  6.62E+02  2.5E-04    50  9.999947191E-02  1.989769250E-05  1.59E-08  2.11E-02  4.11E+00  2.67E+03  4.1E-06    60  9.999999997E-02  1.827111108E-05  1.46E-08  7.34E-07  4.50E+00  2.93E+03  3.9E-06    70  1.000000000E-01  1.827111108E-05  1.46E-08  9.13E-10  4.83E+00  3.15E+03  3.9E-06    80  1.000000000E-01  1.827111108E-05  1.46E-08  3.88E-13  5.15E+00  3.38E+03  3.9E-06    90  1.000000000E-01  1.827111108E-05  1.46E-08  8.00E-15  5.45E+00  3.68E+03  3.8E-06   100  1.000000000E-01  1.827111108E-05  1.46E-08  1.29E-14  5.76E+00  5.30E+03  3.3E-06   102  1.000000000E-01  1.827111108E-05  1.46E-08  9.99E-17  5.84E+00  5.37E+03  3.3E-06 Exit  LSQR.       istop  = 3               itn    =     102 Exit  LSQR.       Anorm  = 5.83666E+00     Acond  = 5.36980E+03 Exit  LSQR.       bnorm  = 1.25036E+03     xnorm  = 1.82711E+03 Exit  LSQR.       rnorm  = 1.82711E-05     Arnorm = 1.06485E-20 Exit  LSQR.       max dx = 1.3E+03 occurred at itn        1 Exit  LSQR.              = 7.2E-01*xnorm Exit  LSQR.       A damped least-squares solution was found, given atol Enter xcheck.     Does x solve Ax = b, etc?    damp            = 1.000E-08    norm(x)         = 1.827E+03    norm(r)         = 1.52211584E-12 = rho1    norm(A'r)       = 6.651E-13      = sigma1    norm(s)         = 1.522E-04    norm(x,s)       = 1.827E+03    norm(rbar)      = 1.82711111E-05 = rho2    norm(Abar'rbar) = 5.511E-13      = sigma2    inform          = 1    tol             = 1.490E-08    test1           = 1.278E-16 (Ax = b)    test2           = 7.487E-02 (least-squares)    test3           = 5.167E-09 (damped least-squares) Solution  x:     1  0.100000         2  0.200000         3  0.300000         4  0.400000         5  0.500000         6  0.600000         7  0.700000         8  0.800000     LSQR  appears to be successful. Relative error in  x  =  1.78E-14 -------------------------------------------------------------------- Least-Squares Test Problem      P( 1000 1000   40    3    1.00E-09 ) Condition no. =  1.5625E+04     Residual function =  2.340076968E-13 -------------------------------------------------------------------- Enter Acheck.     Test of Aprod for LSQR and CRAIG Aprod seems OK.   Relative error =   6.5E-17 Enter LSQR.       Least-squares solution of  Ax = b The matrix  A  has   1000 rows   and   1000 columns damp   =  1.00000000000000E-09   wantse =         F atol   =  3.18E-16               conlim =  1.56E+07 btol   =  3.18E-16               itnlim =      8200   Itn       x(1)           Function     Compatible   LS     Norm Abar Cond Abar alfa_opt     0  0.000000000E+00  1.124314110E+03  1.00E+00  7.28E-04     1 -2.024780599E+01  4.434197695E+02  3.94E-01  6.75E-01  8.91E-01  1.00E+00  5.8E-01     2 -4.437078376E+00  2.477398064E+02  2.20E-01  4.15E-01  1.18E+00  2.15E+00  3.1E-01     3  7.016884706E+00  1.602402503E+02  1.43E-01  2.99E-01  1.38E+00  3.47E+00  2.0E-01     4  1.026274765E+01  1.122030359E+02  9.98E-02  2.31E-01  1.54E+00  4.95E+00  1.5E-01     5  8.511358718E+00  8.242098997E+01  7.33E-02  1.85E-01  1.66E+00  6.61E+00  1.1E-01     6  4.564132190E+00  6.240018990E+01  5.55E-02  1.52E-01  1.76E+00  8.45E+00  8.8E-02     7  6.893647511E-02  4.814476875E+01  4.28E-02  1.26E-01  1.83E+00  1.05E+01  7.0E-02     8 -4.112941580E+00  3.755562129E+01  3.34E-02  1.05E-01  1.89E+00  1.28E+01  5.7E-02     9 -7.562719628E+00  2.943780141E+01  2.62E-02  8.79E-02  1.93E+00  1.54E+01  4.6E-02    10 -1.009825707E+01  2.306846861E+01  2.05E-02  7.32E-02  1.96E+00  1.83E+01  3.8E-02    20 -5.035831628E+00  2.739433197E+00  2.44E-03  1.63E-02  2.48E+00  9.29E+01  6.4E-03    30  1.124013950E+00  3.601797047E-01  3.20E-04  1.75E-01  2.98E+00  4.41E+02  1.2E-03    40  1.472402234E+00  8.564454273E-02  7.62E-05  5.45E-04  3.51E+00  1.03E+03  4.0E-04    50  1.063043900E+00  1.741376789E-02  1.55E-05  2.00E-04  3.90E+00  2.53E+03  1.2E-04    60  4.710591702E-01  8.739956333E-04  7.77E-07  1.05E-02  4.18E+00  8.60E+03  1.5E-05    70  4.295795277E-01  8.220208040E-04  7.31E-07  1.35E-02  4.55E+00  2.55E+04  9.0E-06    80  1.000186679E-01  7.568286506E-06  6.73E-09  6.35E-02  4.89E+00  7.70E+04  5.1E-07    90  1.000000003E-01  1.827149957E-06  1.63E-09  2.34E-04  5.16E+00  8.14E+04  2.5E-07   100  1.000000012E-01  1.827111576E-06  1.63E-09  5.21E-05  5.43E+00  8.57E+04  2.5E-07   110  9.999999998E-02  1.827111108E-06  1.63E-09  1.06E-09  5.74E+00  9.05E+04  2.5E-07   120  1.000000000E-01  1.827111108E-06  1.63E-09  3.96E-11  6.01E+00  9.48E+04  2.5E-07   130  9.999999999E-02  1.827111108E-06  1.63E-09  6.33E-10  6.22E+00  9.88E+04  2.5E-07   140  9.999999999E-02  1.827111108E-06  1.63E-09  7.82E-14  6.44E+00  1.02E+05  2.5E-07   146  9.999999999E-02  1.827111108E-06  1.63E-09  1.14E-15  6.60E+00  1.05E+05  2.5E-07   147  9.999999999E-02  1.827111108E-06  1.63E-09  9.66E-16  6.61E+00  1.05E+05  2.5E-07   148  9.999999999E-02  1.827111108E-06  1.63E-09  2.32E-15  6.61E+00  1.05E+05  2.5E-07   150  9.999999999E-02  1.827111108E-06  1.63E-09  1.65E-13  6.64E+00  1.06E+05  2.5E-07   160  1.000000000E-01  1.827111108E-06  1.63E-09  6.98E-15  6.89E+00  1.53E+05  2.1E-07   161  1.000000000E-01  1.827111108E-06  1.63E-09  1.84E-15  6.90E+00  1.54E+05  2.1E-07   162  1.000000000E-01  1.827111108E-06  1.63E-09  1.53E-15  6.94E+00  1.55E+05  2.1E-07   168  1.000000000E-01  1.827111108E-06  1.63E-09  5.30E-16  7.10E+00  1.58E+05  2.1E-07   169  1.000000000E-01  1.827111108E-06  1.63E-09  6.26E-16  7.11E+00  1.58E+05  2.1E-07   170  1.000000000E-01  1.827111108E-06  1.63E-09  3.29E-16  7.14E+00  1.59E+05  2.1E-07   171  1.000000000E-01  1.827111108E-06  1.63E-09  9.55E-16  7.14E+00  1.59E+05  2.1E-07   172  1.000000000E-01  1.827111108E-06  1.63E-09  1.54E-16  7.14E+00  1.59E+05  2.1E-07 Exit  LSQR.       istop  = 3               itn    =     172 Exit  LSQR.       Anorm  = 7.14393E+00     Acond  = 1.59237E+05 Exit  LSQR.       bnorm  = 1.12431E+03     xnorm  = 1.82711E+03 Exit  LSQR.       rnorm  = 1.82711E-06     Arnorm = 2.00628E-21 Exit  LSQR.       max dx = 1.2E+03 occurred at itn        1 Exit  LSQR.              = 6.3E-01*xnorm Exit  LSQR.       A damped least-squares solution was found, given atol Enter xcheck.     Does x solve Ax = b, etc?    damp            = 1.000E-09    norm(x)         = 1.827E+03    norm(r)         = 6.75040148E-13 = rho1    norm(A'r)       = 5.141E-13      = sigma1    norm(s)         = 6.750E-04    norm(x,s)       = 1.827E+03    norm(rbar)      = 1.82711111E-06 = rho2    norm(Abar'rbar) = 5.145E-13      = sigma2    inform          = 1    tol             = 1.490E-08    test1           = 4.761E-17 (Ax = b)    test2           = 1.066E-01 (least-squares)    test3           = 3.941E-08 (damped least-squares) Solution  x:     1  0.100000         2  0.200000         3  0.300000         4  0.400000         5  0.500000         6  0.600000         7  0.700000         8  0.800000     LSQR  appears to be successful. Relative error in  x  =  1.47E-13 -------------------------------------------------------------------- Least-Squares Test Problem      P( 1000 1000   40    4    1.00E-10 ) Condition no. =  3.9062E+05     Residual function =  5.505354820E-14 -------------------------------------------------------------------- Enter Acheck.     Test of Aprod for LSQR and CRAIG Aprod seems OK.   Relative error =   1.3E-16 Enter LSQR.       Least-squares solution of  Ax = b The matrix  A  has   1000 rows   and   1000 columns damp   =  1.00000000000000E-10   wantse =         F atol   =  3.18E-16               conlim =  3.91E+08 btol   =  3.18E-16               itnlim =      8200   Itn       x(1)           Function     Compatible   LS     Norm Abar Cond Abar alfa_opt     0  0.000000000E+00  1.036321269E+03  1.00E+00  7.89E-04     1 -2.290522293E+01  4.276503344E+02  4.13E-01  6.53E-01  8.98E-01  1.00E+00  6.0E-01     2 -1.229519129E+01  2.452814271E+02  2.37E-01  3.95E-01  1.18E+00  2.16E+00  3.2E-01     3  2.912832494E-01  1.607146736E+02  1.55E-01  2.79E-01  1.37E+00  3.52E+00  2.1E-01

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -