📄 lsqr.txt
字号:
250 1.092330280E-01 3.162277661E+01 3.59E-02 3.20E-14 7.99E+00 8.13E+07 4.1E-05 260 1.092242657E-01 3.162277661E+01 3.59E-02 4.21E-14 8.12E+00 8.27E+07 4.1E-05 265 1.091385334E-01 3.162277661E+01 3.59E-02 2.52E-16 8.24E+00 8.39E+07 4.1E-05 Exit LSQR. istop = 3 itn = 265 Exit LSQR. Anorm = 8.24247E+00 Acond = 8.38980E+07 Exit LSQR. bnorm = 8.80846E+02 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16228E+01 Arnorm = 6.56943E-14 Exit LSQR. max dx = 8.6E+02 occurred at itn 1 Exit LSQR. = 4.7E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-07 norm(x) = 1.827E+03 norm(r) = 3.16227766E+01 = rho1 norm(A'r) = 1.834E-11 = sigma1 norm(s) = 3.162E+08 norm(x,s) = 3.162E+08 norm(rbar) = 3.16227766E+01 = rho2 norm(Abar'rbar) = 5.557E-13 = sigma2 inform = 2 tol = 1.490E-08 test1 = 1.984E-03 (Ax = b) test2 = 7.038E-14 (least-squares) test3 = 2.132E-15 (damped least-squares) Solution x: 1 0.109139 2 0.205252 3 0.303031 4 0.398222 5 0.496653 6 0.590571 7 0.687856 8 0.784782 LSQR appears to be successful. Relative error in x = 2.81E-04 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 2 1.00E-08 ) Condition no. = 6.2500E+02 Residual function = 1.351130091E-12 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 1.3E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-08 wantse = F atol = 3.18E-16 conlim = 6.25E+05 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.250358806E+03 1.00E+00 6.63E-04 1 -1.569523708E+01 4.497539700E+02 3.60E-01 7.06E-01 8.88E-01 1.00E+00 5.5E-01 2 2.895287270E+00 2.360568875E+02 1.89E-01 4.42E-01 1.18E+00 2.12E+00 2.9E-01 3 6.914168784E+00 1.462934678E+02 1.17E-01 3.24E-01 1.39E+00 3.40E+00 1.9E-01 4 1.929180742E+00 9.956862892E+01 7.96E-02 2.55E-01 1.56E+00 4.82E+00 1.4E-01 5 -4.030073311E+00 7.189983046E+01 5.75E-02 2.09E-01 1.70E+00 6.39E+00 1.1E-01 6 -8.170857369E+00 5.403308925E+01 4.32E-02 1.76E-01 1.83E+00 8.09E+00 8.3E-02 7 -1.028185061E+01 4.175446117E+01 3.34E-02 1.50E-01 1.93E+00 9.92E+00 6.8E-02 8 -1.086059048E+01 3.291017600E+01 2.63E-02 1.30E-01 2.02E+00 1.19E+01 5.6E-02 9 -1.044238556E+01 2.630121592E+01 2.10E-02 1.14E-01 2.09E+00 1.40E+01 4.7E-02 10 -9.437438588E+00 2.121469253E+01 1.70E-02 9.96E-02 2.15E+00 1.63E+01 3.9E-02 20 8.996819441E-01 2.390187891E+00 1.91E-03 2.15E-02 2.55E+00 6.46E+01 7.2E-03 30 9.270667113E-01 1.748092040E-01 1.40E-04 1.86E-02 3.15E+00 2.80E+02 1.0E-03 40 4.459333261E-01 2.036524001E-02 1.63E-05 2.88E-03 3.66E+00 6.62E+02 2.5E-04 50 9.999947191E-02 1.989769250E-05 1.59E-08 2.11E-02 4.11E+00 2.67E+03 4.1E-06 60 9.999999997E-02 1.827111108E-05 1.46E-08 7.34E-07 4.50E+00 2.93E+03 3.9E-06 70 1.000000000E-01 1.827111108E-05 1.46E-08 9.13E-10 4.83E+00 3.15E+03 3.9E-06 80 1.000000000E-01 1.827111108E-05 1.46E-08 3.88E-13 5.15E+00 3.38E+03 3.9E-06 90 1.000000000E-01 1.827111108E-05 1.46E-08 8.00E-15 5.45E+00 3.68E+03 3.8E-06 100 1.000000000E-01 1.827111108E-05 1.46E-08 1.29E-14 5.76E+00 5.30E+03 3.3E-06 102 1.000000000E-01 1.827111108E-05 1.46E-08 9.99E-17 5.84E+00 5.37E+03 3.3E-06 Exit LSQR. istop = 3 itn = 102 Exit LSQR. Anorm = 5.83666E+00 Acond = 5.36980E+03 Exit LSQR. bnorm = 1.25036E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-05 Arnorm = 1.06485E-20 Exit LSQR. max dx = 1.3E+03 occurred at itn 1 Exit LSQR. = 7.2E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-08 norm(x) = 1.827E+03 norm(r) = 1.52211584E-12 = rho1 norm(A'r) = 6.651E-13 = sigma1 norm(s) = 1.522E-04 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-05 = rho2 norm(Abar'rbar) = 5.511E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 1.278E-16 (Ax = b) test2 = 7.487E-02 (least-squares) test3 = 5.167E-09 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 1.78E-14 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 3 1.00E-09 ) Condition no. = 1.5625E+04 Residual function = 2.340076968E-13 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 6.5E-17 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-09 wantse = F atol = 3.18E-16 conlim = 1.56E+07 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.124314110E+03 1.00E+00 7.28E-04 1 -2.024780599E+01 4.434197695E+02 3.94E-01 6.75E-01 8.91E-01 1.00E+00 5.8E-01 2 -4.437078376E+00 2.477398064E+02 2.20E-01 4.15E-01 1.18E+00 2.15E+00 3.1E-01 3 7.016884706E+00 1.602402503E+02 1.43E-01 2.99E-01 1.38E+00 3.47E+00 2.0E-01 4 1.026274765E+01 1.122030359E+02 9.98E-02 2.31E-01 1.54E+00 4.95E+00 1.5E-01 5 8.511358718E+00 8.242098997E+01 7.33E-02 1.85E-01 1.66E+00 6.61E+00 1.1E-01 6 4.564132190E+00 6.240018990E+01 5.55E-02 1.52E-01 1.76E+00 8.45E+00 8.8E-02 7 6.893647511E-02 4.814476875E+01 4.28E-02 1.26E-01 1.83E+00 1.05E+01 7.0E-02 8 -4.112941580E+00 3.755562129E+01 3.34E-02 1.05E-01 1.89E+00 1.28E+01 5.7E-02 9 -7.562719628E+00 2.943780141E+01 2.62E-02 8.79E-02 1.93E+00 1.54E+01 4.6E-02 10 -1.009825707E+01 2.306846861E+01 2.05E-02 7.32E-02 1.96E+00 1.83E+01 3.8E-02 20 -5.035831628E+00 2.739433197E+00 2.44E-03 1.63E-02 2.48E+00 9.29E+01 6.4E-03 30 1.124013950E+00 3.601797047E-01 3.20E-04 1.75E-01 2.98E+00 4.41E+02 1.2E-03 40 1.472402234E+00 8.564454273E-02 7.62E-05 5.45E-04 3.51E+00 1.03E+03 4.0E-04 50 1.063043900E+00 1.741376789E-02 1.55E-05 2.00E-04 3.90E+00 2.53E+03 1.2E-04 60 4.710591702E-01 8.739956333E-04 7.77E-07 1.05E-02 4.18E+00 8.60E+03 1.5E-05 70 4.295795277E-01 8.220208040E-04 7.31E-07 1.35E-02 4.55E+00 2.55E+04 9.0E-06 80 1.000186679E-01 7.568286506E-06 6.73E-09 6.35E-02 4.89E+00 7.70E+04 5.1E-07 90 1.000000003E-01 1.827149957E-06 1.63E-09 2.34E-04 5.16E+00 8.14E+04 2.5E-07 100 1.000000012E-01 1.827111576E-06 1.63E-09 5.21E-05 5.43E+00 8.57E+04 2.5E-07 110 9.999999998E-02 1.827111108E-06 1.63E-09 1.06E-09 5.74E+00 9.05E+04 2.5E-07 120 1.000000000E-01 1.827111108E-06 1.63E-09 3.96E-11 6.01E+00 9.48E+04 2.5E-07 130 9.999999999E-02 1.827111108E-06 1.63E-09 6.33E-10 6.22E+00 9.88E+04 2.5E-07 140 9.999999999E-02 1.827111108E-06 1.63E-09 7.82E-14 6.44E+00 1.02E+05 2.5E-07 146 9.999999999E-02 1.827111108E-06 1.63E-09 1.14E-15 6.60E+00 1.05E+05 2.5E-07 147 9.999999999E-02 1.827111108E-06 1.63E-09 9.66E-16 6.61E+00 1.05E+05 2.5E-07 148 9.999999999E-02 1.827111108E-06 1.63E-09 2.32E-15 6.61E+00 1.05E+05 2.5E-07 150 9.999999999E-02 1.827111108E-06 1.63E-09 1.65E-13 6.64E+00 1.06E+05 2.5E-07 160 1.000000000E-01 1.827111108E-06 1.63E-09 6.98E-15 6.89E+00 1.53E+05 2.1E-07 161 1.000000000E-01 1.827111108E-06 1.63E-09 1.84E-15 6.90E+00 1.54E+05 2.1E-07 162 1.000000000E-01 1.827111108E-06 1.63E-09 1.53E-15 6.94E+00 1.55E+05 2.1E-07 168 1.000000000E-01 1.827111108E-06 1.63E-09 5.30E-16 7.10E+00 1.58E+05 2.1E-07 169 1.000000000E-01 1.827111108E-06 1.63E-09 6.26E-16 7.11E+00 1.58E+05 2.1E-07 170 1.000000000E-01 1.827111108E-06 1.63E-09 3.29E-16 7.14E+00 1.59E+05 2.1E-07 171 1.000000000E-01 1.827111108E-06 1.63E-09 9.55E-16 7.14E+00 1.59E+05 2.1E-07 172 1.000000000E-01 1.827111108E-06 1.63E-09 1.54E-16 7.14E+00 1.59E+05 2.1E-07 Exit LSQR. istop = 3 itn = 172 Exit LSQR. Anorm = 7.14393E+00 Acond = 1.59237E+05 Exit LSQR. bnorm = 1.12431E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 1.82711E-06 Arnorm = 2.00628E-21 Exit LSQR. max dx = 1.2E+03 occurred at itn 1 Exit LSQR. = 6.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-09 norm(x) = 1.827E+03 norm(r) = 6.75040148E-13 = rho1 norm(A'r) = 5.141E-13 = sigma1 norm(s) = 6.750E-04 norm(x,s) = 1.827E+03 norm(rbar) = 1.82711111E-06 = rho2 norm(Abar'rbar) = 5.145E-13 = sigma2 inform = 1 tol = 1.490E-08 test1 = 4.761E-17 (Ax = b) test2 = 1.066E-01 (least-squares) test3 = 3.941E-08 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 1.47E-13 -------------------------------------------------------------------- Least-Squares Test Problem P( 1000 1000 40 4 1.00E-10 ) Condition no. = 3.9062E+05 Residual function = 5.505354820E-14 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 1.3E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 1000 rows and 1000 columns damp = 1.00000000000000E-10 wantse = F atol = 3.18E-16 conlim = 3.91E+08 btol = 3.18E-16 itnlim = 8200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.036321269E+03 1.00E+00 7.89E-04 1 -2.290522293E+01 4.276503344E+02 4.13E-01 6.53E-01 8.98E-01 1.00E+00 6.0E-01 2 -1.229519129E+01 2.452814271E+02 2.37E-01 3.95E-01 1.18E+00 2.16E+00 3.2E-01 3 2.912832494E-01 1.607146736E+02 1.55E-01 2.79E-01 1.37E+00 3.52E+00 2.1E-01
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -