📄 lsqr.txt
字号:
-------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 2 1.00E-02 ) Condition no. = 9.8749E+01 Residual function = 3.165162796E+01 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 7.6E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-02 wantse = F atol = 3.18E-16 conlim = 9.87E+04 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.251026233E+03 1.00E+00 6.62E-04 1 -1.569382661E+01 4.513015121E+02 3.61E-01 7.04E-01 8.88E-01 1.00E+00 5.5E-01 2 2.897013496E+00 2.389170081E+02 1.91E-01 4.36E-01 1.18E+00 2.12E+00 2.9E-01 3 6.912476123E+00 1.508301251E+02 1.21E-01 3.14E-01 1.39E+00 3.40E+00 1.9E-01 4 1.925468458E+00 1.061006594E+02 8.48E-02 2.39E-01 1.56E+00 4.82E+00 1.4E-01 5 -4.031144634E+00 8.068847228E+01 6.45E-02 1.86E-01 1.70E+00 6.39E+00 1.1E-01 6 -8.164502129E+00 6.526230465E+01 5.22E-02 1.45E-01 1.83E+00 8.09E+00 9.2E-02 7 -1.026456074E+01 5.551640158E+01 4.44E-02 1.13E-01 1.93E+00 9.92E+00 7.8E-02 8 -1.083036972E+01 4.920410096E+01 3.93E-02 8.72E-02 2.02E+00 1.19E+01 6.8E-02 9 -1.039855535E+01 4.504692088E+01 3.60E-02 6.64E-02 2.09E+00 1.40E+01 6.1E-02 10 -9.380373468E+00 4.227482078E+01 3.38E-02 5.00E-02 2.15E+00 1.63E+01 5.6E-02 20 8.956177896E-01 3.662630556E+01 2.93E-02 1.58E-03 2.55E+00 6.45E+01 2.8E-02 30 4.676353374E-01 3.654706202E+01 2.92E-02 4.86E-05 3.15E+00 2.51E+02 1.6E-02 40 1.003079085E-01 3.654666958E+01 2.92E-02 3.77E-06 3.66E+00 5.51E+02 1.2E-02 50 9.999999951E-02 3.654666951E+01 2.92E-02 1.52E-11 4.14E+00 6.26E+02 1.1E-02 59 1.000000000E-01 3.654666951E+01 2.92E-02 7.71E-16 4.50E+00 6.86E+02 1.1E-02 60 1.000000000E-01 3.654666951E+01 2.92E-02 1.60E-15 4.50E+00 6.90E+02 1.1E-02 61 1.000000000E-01 3.654666951E+01 2.92E-02 3.54E-16 4.55E+00 6.99E+02 1.1E-02 62 1.000000000E-01 3.654666951E+01 2.92E-02 1.08E-16 4.57E+00 7.01E+02 1.1E-02 Exit LSQR. istop = 3 itn = 62 Exit LSQR. Anorm = 4.56805E+00 Acond = 7.01224E+02 Exit LSQR. bnorm = 1.25103E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.65467E+01 Arnorm = 1.80399E-14 Exit LSQR. max dx = 1.3E+03 occurred at itn 1 Exit LSQR. = 7.2E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-02 norm(x) = 1.827E+03 norm(r) = 3.16516280E+01 = rho1 norm(A'r) = 1.827E-01 = sigma1 norm(s) = 3.165E+03 norm(x,s) = 3.655E+03 norm(rbar) = 3.65466695E+01 = rho2 norm(Abar'rbar) = 5.685E-13 = sigma2 inform = 3 tol = 1.490E-08 test1 = 3.298E-03 (Ax = b) test2 = 1.264E-03 (least-squares) test3 = 3.405E-15 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 5.77E-15 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 3 1.00E-03 ) Condition no. = 9.9796E+02 Residual function = 3.162364242E+01 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 4.6E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-03 wantse = F atol = 3.18E-16 conlim = 9.98E+05 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.124761730E+03 1.00E+00 7.28E-04 1 -2.024778976E+01 4.445508835E+02 3.95E-01 6.73E-01 8.91E-01 1.00E+00 5.8E-01 2 -4.437036642E+00 2.497578091E+02 2.22E-01 4.11E-01 1.18E+00 2.15E+00 3.1E-01 3 7.016901406E+00 1.633423201E+02 1.45E-01 2.93E-01 1.38E+00 3.47E+00 2.1E-01 4 1.026269712E+01 1.165898904E+02 1.04E-01 2.22E-01 1.54E+00 4.95E+00 1.5E-01 5 8.511232527E+00 8.829972244E+01 7.85E-02 1.73E-01 1.66E+00 6.61E+00 1.2E-01 6 4.563956177E+00 6.998116189E+01 6.22E-02 1.35E-01 1.76E+00 8.45E+00 9.3E-02 7 6.876673714E-02 5.763216488E+01 5.12E-02 1.05E-01 1.83E+00 1.05E+01 7.7E-02 8 -4.113020748E+00 4.913193846E+01 4.37E-02 8.04E-02 1.89E+00 1.28E+01 6.5E-02 9 -7.562594838E+00 4.324449567E+01 3.84E-02 5.99E-02 1.93E+00 1.54E+01 5.6E-02 10 -1.009778237E+01 3.918723449E+01 3.48E-02 4.31E-02 1.96E+00 1.83E+01 4.9E-02 20 -5.028362208E+00 3.179504338E+01 2.83E-02 1.16E-03 2.50E+00 9.38E+01 2.2E-02 30 6.225162344E-01 3.168093575E+01 2.82E-02 1.29E-03 2.98E+00 3.23E+02 1.3E-02 40 1.363094331E+00 3.167653023E+01 2.82E-02 1.93E-06 3.50E+00 1.01E+03 7.7E-03 50 7.373757826E-01 3.167639280E+01 2.82E-02 1.69E-06 3.84E+00 2.26E+03 5.4E-03 60 1.405348541E-01 3.167638076E+01 2.82E-02 8.50E-08 4.23E+00 4.54E+03 4.0E-03 70 9.999935981E-02 3.167638071E+01 2.82E-02 1.13E-09 4.55E+00 6.62E+03 3.4E-03 80 9.999999378E-02 3.167638071E+01 2.82E-02 3.45E-12 4.89E+00 7.13E+03 3.4E-03 90 9.999999986E-02 3.167638071E+01 2.82E-02 2.45E-13 5.17E+00 7.56E+03 3.4E-03 93 9.999999998E-02 3.167638071E+01 2.82E-02 4.61E-17 5.27E+00 7.72E+03 3.4E-03 Exit LSQR. istop = 3 itn = 93 Exit LSQR. Anorm = 5.26803E+00 Acond = 7.71629E+03 Exit LSQR. bnorm = 1.12476E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16764E+01 Arnorm = 7.68724E-15 Exit LSQR. max dx = 1.2E+03 occurred at itn 1 Exit LSQR. = 6.3E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-03 norm(x) = 1.827E+03 norm(r) = 3.16236424E+01 = rho1 norm(A'r) = 1.827E-03 = sigma1 norm(s) = 3.162E+04 norm(x,s) = 3.168E+04 norm(rbar) = 3.16763807E+01 = rho2 norm(Abar'rbar) = 8.718E-13 = sigma2 inform = 3 tol = 1.490E-08 test1 = 2.942E-03 (Ax = b) test2 = 1.097E-05 (least-squares) test3 = 5.225E-15 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 1.72E-13 -------------------------------------------------------------------- Least-Squares Test Problem P( 2000 1000 40 4 1.00E-04 ) Condition no. = 9.9967E+03 Residual function = 3.162282452E+01 -------------------------------------------------------------------- Enter Acheck. Test of Aprod for LSQR and CRAIG Aprod seems OK. Relative error = 1.3E-16 Enter LSQR. Least-squares solution of Ax = b The matrix A has 2000 rows and 1000 columns damp = 1.00000000000000E-04 wantse = F atol = 3.18E-16 conlim = 1.00E+07 btol = 3.18E-16 itnlim = 12200 Itn x(1) Function Compatible LS Norm Abar Cond Abar alfa_opt 0 0.000000000E+00 1.036803666E+03 1.00E+00 7.88E-04 1 -2.290522276E+01 4.288179779E+02 4.14E-01 6.51E-01 8.98E-01 1.00E+00 6.1E-01 2 -1.229519069E+01 2.473115919E+02 2.39E-01 3.92E-01 1.18E+00 2.16E+00 3.2E-01 3 2.912839266E-01 1.637963649E+02 1.58E-01 2.74E-01 1.37E+00 3.52E+00 2.1E-01 4 8.372079894E+00 1.171217907E+02 1.13E-01 2.03E-01 1.51E+00 5.07E+00 1.5E-01 5 1.186967936E+01 8.809260300E+01 8.50E-02 1.54E-01 1.61E+00 6.84E+00 1.2E-01 6 1.189446970E+01 6.891456184E+01 6.65E-02 1.16E-01 1.68E+00 8.87E+00 9.0E-02 7 9.555838382E+00 5.587301182E+01 5.39E-02 8.60E-02 1.73E+00 1.12E+01 7.3E-02 8 5.773286086E+00 4.696784938E+01 4.53E-02 6.16E-02 1.76E+00 1.40E+01 6.0E-02 9 1.300142613E+00 4.098617139E+01 3.95E-02 4.20E-02 1.79E+00 1.75E+01 5.0E-02 10 -3.232562301E+00 3.709631214E+01 3.58E-02 2.71E-02 1.80E+00 2.18E+01 4.2E-02 20 -1.047338372E+01 3.168716491E+01 3.06E-02 3.77E-04 2.43E+00 1.47E+02 1.7E-02 30 -2.131856168E+00 3.162499006E+01 3.05E-02 3.92E-05 2.92E+00 6.22E+02 9.0E-03 40 8.750540925E-01 3.162347281E+01 3.05E-02 5.62E-05 3.36E+00 2.15E+03 5.2E-03 50 1.482699147E+00 3.162335684E+01 3.05E-02 2.11E-05 3.76E+00 6.18E+03 3.2E-03 60 1.462228123E+00 3.162335497E+01 3.05E-02 7.67E-07 4.07E+00 8.00E+03 3.0E-03 70 8.833865648E-01 3.162335253E+01 3.05E-02 6.61E-09 4.39E+00 2.06E+04 1.9E-03 80 1.462338138E-01 3.162335236E+01 3.05E-02 1.21E-06 4.70E+00 4.86E+04 1.3E-03 90 1.319365245E-01 3.162335236E+01 3.05E-02 6.04E-09 4.98E+00 5.20E+04 1.3E-03 100 1.002811364E-01 3.162335236E+01 3.05E-02 2.25E-08 5.27E+00 7.56E+04 1.1E-03 110 9.999998219E-02 3.162335236E+01 3.05E-02 1.20E-10 5.54E+00 7.98E+04 1.1E-03 120 9.999997810E-02 3.162335236E+01 3.05E-02 1.64E-13 5.78E+00 8.33E+04 1.1E-03 130 9.999999965E-02 3.162335236E+01 3.05E-02 4.45E-15 6.04E+00 8.71E+04 1.1E-03 132 9.999999972E-02 3.162335236E+01 3.05E-02 1.62E-15 6.12E+00 8.83E+04 1.1E-03 133 9.999999972E-02 3.162335236E+01 3.05E-02 2.02E-16 6.13E+00 8.83E+04 1.1E-03 Exit LSQR. istop = 3 itn = 133 Exit LSQR. Anorm = 6.12613E+00 Acond = 8.83042E+04 Exit LSQR. bnorm = 1.03680E+03 xnorm = 1.82711E+03 Exit LSQR. rnorm = 3.16234E+01 Arnorm = 3.90657E-14 Exit LSQR. max dx = 1.1E+03 occurred at itn 1 Exit LSQR. = 5.8E-01*xnorm Exit LSQR. A damped least-squares solution was found, given atol Enter xcheck. Does x solve Ax = b, etc? damp = 1.000E-04 norm(x) = 1.827E+03 norm(r) = 3.16228245E+01 = rho1 norm(A'r) = 1.827E-05 = sigma1 norm(s) = 3.162E+05 norm(x,s) = 3.162E+05 norm(rbar) = 3.16233524E+01 = rho2 norm(Abar'rbar) = 6.106E-13 = sigma2 inform = 3 tol = 1.490E-08 test1 = 2.586E-03 (Ax = b) test2 = 9.431E-08 (least-squares) test3 = 3.152E-15 (damped least-squares) Solution x: 1 0.100000 2 0.200000 3 0.300000 4 0.400000 5 0.500000 6 0.600000 7 0.700000 8 0.800000 LSQR appears to be successful. Relative error in x = 5.26E-12
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -