📄 ecgsyn.m
字号:
function [s, ipeaks] = ecgsyn(sfecg,N,Anoise,hrmean,hrstd,lfhfratio,sfint,ti,ai,bi)% [s, ipeaks] = ecgsyn(sfecg,N,Anoise,hrmean,hrstd,lfhfratio,sfint,ti,ai,bi)% Produces synthetic ECG with the following outputs:% s: ECG (mV)% ipeaks: labels for PQRST peaks: P(1), Q(2), R(3), S(4), T(5)% A zero lablel is output otherwise ... use R=find(ipeaks==3); % to find the R peaks s(R), etc. % % Operation uses the following parameters (default values in []s):% sfecg: ECG sampling frequency [256 Hertz]% N: approximate number of heart beats [256]% Anoise: Additive uniformly distributed measurement noise [0 mV]% hrmean: Mean heart rate [60 beats per minute]% hrstd: Standard deviation of heart rate [1 beat per minute]% lfhfratio: LF/HF ratio [0.5]% sfint: Internal sampling frequency [256 Hertz]% Order of extrema: [P Q R S T]% ti = angles of extrema [-70 -15 0 15 100] degrees% ai = z-position of extrema [1.2 -5 30 -7.5 0.75]% bi = Gaussian width of peaks [0.25 0.1 0.1 0.1 0.4]% Copyright (c) 2003 by Patrick McSharry & Gari Clifford, All Rights Reserved % See IEEE Transactions On Biomedical Engineering, 50(3), 289-294, March 2003.% Contact P. McSharry (patrick@mcsharry.net) or G. Clifford (gari@mit.edu)% This program is free software; you can redistribute it and/or modify% it under the terms of the GNU General Public License as published by% the Free Software Foundation; either version 2 of the License, or% (at your option) any later version.%% This program is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the% GNU General Public License for more details.%% You should have received a copy of the GNU General Public License% along with this program; if not, write to the Free Software% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA% % ecgsyn.m and its dependents are freely availble from Physionet - % http://www.physionet.org/ - please report any bugs to the authors above.% set parameter default valuesif nargin < 1 sfecg = 256;endif nargin < 2 N = 256;endif nargin < 3 Anoise = 0;endif nargin < 4 hrmean = 60;endif nargin < 5 hrstd = 1;endif nargin < 6 lfhfratio = 0.5;endif nargin < 7 sfint = 512;endif nargin <8 % P Q R S T ti = [-70 -15 0 15 100];end% convert to radiansti = ti*pi/180;if nargin <9 % z position of attractor % P Q R S T ai = [1.2 -5 30 -7.5 0.75];endif nargin <10 % Gaussian width of each attractor % P Q R S T bi = [0.25 0.1 0.1 0.1 0.4];end% adjust extrema parameters for mean heart rate hrfact = sqrt(hrmean/60);hrfact2 = sqrt(hrfact);bi = hrfact*bi;ti = [hrfact2 hrfact 1 hrfact hrfact2].*ti;% check that sfint is an integer multiple of sfecg q = round(sfint/sfecg);qd = sfint/sfecg;if q ~= qd error(['Internal sampling frequency (sfint) must be an integer multiple ' ... 'of the ECG sampling frequency (sfecg). Your current choices are: ' ... 'sfecg = ' int2str(sfecg) ' and sfint = ' int2str(sfint) '.']);end% define frequency parameters for rr process % flo and fhi correspond to the Mayer waves and respiratory rate respectivelyflo = 0.1;fhi = 0.25;flostd = 0.01;fhistd = 0.01;fid = 1;fprintf(fid,'ECG sampled at %d Hz\n',sfecg);fprintf(fid,'Approximate number of heart beats: %d\n',N);fprintf(fid,'Measurement noise amplitude: %d \n',Anoise);fprintf(fid,'Heart rate mean: %d bpm\n',hrmean);fprintf(fid,'Heart rate std: %d bpm\n',hrstd);fprintf(fid,'LF/HF ratio: %g\n',lfhfratio);fprintf(fid,'Internal sampling frequency: %g\n',sfint);fprintf(fid,' P Q R S T\n'); fprintf(fid,'ti = [%g %g %g %g %g] radians\n',ti(1),ti(2),ti(3),ti(4),ti(5));fprintf(fid,'ai = [%g %g %g %g %g]\n',ai(1),ai(2),ai(3),ai(4),ai(5));fprintf(fid,'bi = [%g %g %g %g %g]\n',bi(1),bi(2),bi(3),bi(4),bi(5));% calculate time scales for rr and total outputsampfreqrr = 1;trr = 1/sampfreqrr; tstep = 1/sfecg;rrmean = (60/hrmean); Nrr = 2^(ceil(log2(N*rrmean/trr)));% compute rr processrr0 = rrprocess(flo,fhi,flostd,fhistd,lfhfratio,hrmean,hrstd,sampfreqrr,Nrr);% upsample rr time series from 1 Hz to sfint Hzrr = interp(rr0,sfint);% make the rrn time seriesdt = 1/sfint;rrn = zeros(length(rr),1);tecg=0;i = 1;while i <= length(rr) tecg = tecg+rr(i); ip = round(tecg/dt); rrn(i:ip) = rr(i); i = ip+1;end Nt = ip;% integrate system using fourth order Runge-Kuttafprintf(fid,'Integrating dynamical system\n');x0 = [1,0,0.04];Tspan = [0:dt:(Nt-1)*dt];[T,X0] = ode45('derivsecgsyn',Tspan,x0,[],rrn,sfint,ti,ai,bi);% downsample to required sfecgX = X0(1:q:end,:);% extract R-peaks timesipeaks = detectpeaks(X, ti, sfecg);% Scale signal to lie between -0.4 and 1.2 mVz = X(:,3);zmin = min(z);zmax = max(z);zrange = zmax - zmin;z = (z - zmin)*(1.6)/zrange -0.4;% include additive uniformly distributed measurement noise eta = 2*rand(length(z),1)-1;s = z + Anoise*eta;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function rr = rrprocess(flo, fhi, flostd, fhistd, lfhfratio, hrmean, hrstd, sfrr, n)w1 = 2*pi*flo;w2 = 2*pi*fhi;c1 = 2*pi*flostd;c2 = 2*pi*fhistd;sig2 = 1;sig1 = lfhfratio;rrmean = 60/hrmean;rrstd = 60*hrstd/(hrmean*hrmean);df = sfrr/n;w = [0:n-1]'*2*pi*df;dw1 = w-w1;dw2 = w-w2;Hw1 = sig1*exp(-0.5*(dw1/c1).^2)/sqrt(2*pi*c1^2);Hw2 = sig2*exp(-0.5*(dw2/c2).^2)/sqrt(2*pi*c2^2);Hw = Hw1 + Hw2;Hw0 = [Hw(1:n/2); Hw(n/2:-1:1)];Sw = (sfrr/2)*sqrt(Hw0);ph0 = 2*pi*rand(n/2-1,1);ph = [ 0; ph0; 0; -flipud(ph0) ]; SwC = Sw .* exp(j*ph);x = (1/n)*real(ifft(SwC));xstd = std(x);ratio = rrstd/xstd;rr = rrmean + x*ratio;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function ind = detectpeaks(X, thetap, sfecg)N = length(X);irpeaks = zeros(N,1);theta = atan2(X(:,2),X(:,1));ind0 = zeros(N,1);for i=1:N-1 a = ( (theta(i) <= thetap) & (thetap <= theta(i+1)) ); j = find(a==1); if ~isempty(j) d1 = thetap(j) - theta(i); d2 = theta(i+1) - thetap(j); if d1 < d2 ind0(i) = j; else ind0(i+1) = j; end endendd = ceil(sfecg/64);d = max([2 d])ind = zeros(N,1);z = X(:,3);zmin = min(z);zmax = max(z);zext = [zmin zmax zmin zmax zmin];sext = [1 -1 1 -1 1];for i=1:5 clear ind1 Z k vmax imax iext; ind1 = find(ind0==i); n = length(ind1); Z = ones(n,2*d+1)*zext(i)*sext(i); for j=-d:d k = find( (1 <= ind1+j) & (ind1+j <= N) ); Z(k,d+j+1) = z(ind1(k)+j)*sext(i); end [vmax, ivmax] = max(Z,[],2); iext = ind1 + ivmax-d-1; ind(iext) = i;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -