📄 i2c.c.svn-base
字号:
if (flags & I2CF_START_COND) { PRINTD(("[I2C] Formatting addresses...\n")); if (flags & I2CF_ENABLE_SECONDARY) { txbd->length = size + 2; /* Length of msg + dest addr */ txbd->addr[0] = address << 1; txbd->addr[1] = secondary_address; i = 2; } else { txbd->length = size + 1; /* Length of msg + dest addr */ txbd->addr[0] = address << 1; /* Write dest addr to BD */ i = 1; } } else { txbd->length = size; /* Length of message */ i = 0; } /* set up txbd */ txbd->status = BD_SC_READY; if (flags & I2CF_START_COND) txbd->status |= BD_I2C_TX_START; if (flags & I2CF_STOP_COND) txbd->status |= BD_SC_LAST | BD_SC_WRAP; /* Copy data to send into buffer */ PRINTD(("[I2C] copy data...\n")); for(j = 0; j < size; i++, j++) txbd->addr[i] = dataout[j]; PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", txbd->length, txbd->status, txbd->addr[0], txbd->addr[1])); /* advance state */ state->tx_buf += txbd->length; state->tx_space -= txbd->length; state->tx_idx++; state->txbd = (void*)(txbd + 1); return 0;}static inti2c_receive(i2c_state_t *state, unsigned char address, unsigned char secondary_address, unsigned int flags, unsigned short size_to_expect, unsigned char *datain){ volatile I2C_BD *rxbd, *txbd; PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags)); /* Expected to receive too much */ if (size_to_expect > I2C_RXTX_LEN) return I2CERR_MSG_TOO_LONG; /* no more free bds */ if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS || state->tx_space < 2) return I2CERR_NO_BUFFERS; rxbd = (I2C_BD *)state->rxbd; txbd = (I2C_BD *)state->txbd; PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd)); PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); txbd->addr = state->tx_buf; /* set up TXBD for destination address */ if (flags & I2CF_ENABLE_SECONDARY) { txbd->length = 2; txbd->addr[0] = address << 1; /* Write data */ txbd->addr[1] = secondary_address; /* Internal address */ txbd->status = BD_SC_READY; } else { txbd->length = 1 + size_to_expect; txbd->addr[0] = (address << 1) | 0x01; txbd->status = BD_SC_READY; memset(&txbd->addr[1], 0, txbd->length); } /* set up rxbd for reception */ rxbd->status = BD_SC_EMPTY; rxbd->length = size_to_expect; rxbd->addr = datain; txbd->status |= BD_I2C_TX_START; if (flags & I2CF_STOP_COND) { txbd->status |= BD_SC_LAST | BD_SC_WRAP; rxbd->status |= BD_SC_WRAP; } PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", txbd->length, txbd->status, txbd->addr[0], txbd->addr[1])); PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", rxbd->length, rxbd->status, rxbd->addr[0], rxbd->addr[1])); /* advance state */ state->tx_buf += txbd->length; state->tx_space -= txbd->length; state->tx_idx++; state->txbd = (void*)(txbd + 1); state->rx_idx++; state->rxbd = (void*)(rxbd + 1); return 0;}static int i2c_doio(i2c_state_t *state){ volatile immap_t *immap = (immap_t *)CFG_IMMR ; volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c; volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; volatile I2C_BD *txbd, *rxbd; volatile int j = 0; PRINTD(("[I2C] i2c_doio\n"));#ifdef CFG_I2C_UCODE_PATCH iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];#endif if (state->tx_idx <= 0 && state->rx_idx <= 0) { PRINTD(("[I2C] No I/O is queued\n")); return I2CERR_QUEUE_EMPTY; } iip->iic_rbptr = iip->iic_rbase; iip->iic_tbptr = iip->iic_tbase; /* Enable I2C */ PRINTD(("[I2C] Enabling I2C...\n")); i2c->i2c_i2mod |= 0x01; /* Begin transmission */ i2c->i2c_i2com |= 0x80; /* Loop until transmit & receive completed */ if (state->tx_idx > 0) { txbd = ((I2C_BD*)state->txbd) - 1; PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd)); while((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) { if (ctrlc()) { return (-1); } __asm__ __volatile__ ("eieio"); } } if ((state->rx_idx > 0) && (j < TOUT_LOOP)) { rxbd = ((I2C_BD*)state->rxbd) - 1; PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd)); while((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) { if (ctrlc()) { return (-1); } __asm__ __volatile__ ("eieio"); } } /* Turn off I2C */ i2c->i2c_i2mod &= ~0x01; if (state->err_cb != NULL) { int n, i, b; /* * if we have an error callback function, look at the * error bits in the bd status and pass them back */ if ((n = state->tx_idx) > 0) { for (i = 0; i < n; i++) { txbd = ((I2C_BD*)state->txbd) - (n - i); if ((b = txbd->status & BD_I2C_TX_ERR) != 0) (*state->err_cb)(I2CECB_TX_ERR|b, i); } } if ((n = state->rx_idx) > 0) { for (i = 0; i < n; i++) { rxbd = ((I2C_BD*)state->rxbd) - (n - i); if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) (*state->err_cb)(I2CECB_RX_ERR|b, i); } } if (j >= TOUT_LOOP) (*state->err_cb)(I2CECB_TIMEOUT, 0); } return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;}static int had_tx_nak;static voidi2c_test_callback(int flags, int xnum){ if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK)) had_tx_nak = 1;}int i2c_probe(uchar chip){ i2c_state_t state; int rc; uchar buf[1]; i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); i2c_newio(&state); state.err_cb = i2c_test_callback; had_tx_nak = 0; rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf); if (rc != 0) return (rc); rc = i2c_doio(&state); if ((rc != 0) && (rc != I2CERR_TIMEOUT)) return (rc); return (had_tx_nak);}int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len){ i2c_state_t state; uchar xaddr[4]; int rc;#ifdef CONFIG_LWMON WATCHDOG_RESET();#endif xaddr[0] = (addr >> 24) & 0xFF; xaddr[1] = (addr >> 16) & 0xFF; xaddr[2] = (addr >> 8) & 0xFF; xaddr[3] = addr & 0xFF;#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW /* * EEPROM chips that implement "address overflow" are ones like * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the * extra bits end up in the "chip address" bit slots. This makes * a 24WC08 (1Kbyte) chip look like four 256 byte chips. * * Note that we consider the length of the address field to still * be one byte because the extra address bits are hidden in the * chip address. */ chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);#endif i2c_newio(&state); rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]); if (rc != 0) { if (gd->have_console) printf("i2c_read: i2c_send failed (%d)\n", rc); return 1; } rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer); if (rc != 0) { if (gd->have_console) printf("i2c_read: i2c_receive failed (%d)\n", rc); return 1; } rc = i2c_doio(&state); if (rc != 0) { if (gd->have_console) printf("i2c_read: i2c_doio failed (%d)\n", rc); return 1; } return 0;}int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len){ i2c_state_t state; uchar xaddr[4]; int rc; xaddr[0] = (addr >> 24) & 0xFF; xaddr[1] = (addr >> 16) & 0xFF; xaddr[2] = (addr >> 8) & 0xFF; xaddr[3] = addr & 0xFF;#ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW /* * EEPROM chips that implement "address overflow" are ones like * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the * extra bits end up in the "chip address" bit slots. This makes * a 24WC08 (1Kbyte) chip look like four 256 byte chips. * * Note that we consider the length of the address field to still * be one byte because the extra address bits are hidden in the * chip address. */ chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW);#endif i2c_newio(&state); rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]); if (rc != 0) { if (gd->have_console) printf("i2c_write: first i2c_send failed (%d)\n", rc); return 1; } rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer); if (rc != 0) { if (gd->have_console) printf("i2c_write: second i2c_send failed (%d)\n", rc); return 1; } rc = i2c_doio(&state); if (rc != 0) { if (gd->have_console) printf("i2c_write: i2c_doio failed (%d)\n", rc); return 1; } return 0;}uchari2c_reg_read(uchar i2c_addr, uchar reg){ uchar buf; i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); i2c_read(i2c_addr, reg, 1, &buf, 1); return (buf);}voidi2c_reg_write(uchar i2c_addr, uchar reg, uchar val){ i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); i2c_write(i2c_addr, reg, 1, &val, 1);}#endif /* CONFIG_HARD_I2C */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -