📄 circularhough_grd.m
字号:
if img_is_double,
[grdx, grdy] = gradient(img);
else
[grdx, grdy] = gradient(imgf);
end
grdmag = sqrt(grdx.^2 + grdy.^2);
% Get the linear indices, as well as the subscripts, of the pixels
% whose gradient magnitudes are larger than the given threshold
grdmasklin = find(grdmag > prm_grdthres);
[grdmask_IdxI, grdmask_IdxJ] = ind2sub(size(grdmag), grdmasklin);
% Compute the linear indices (as well as the subscripts) of
% all the votings to the accumulation array.
% The Matlab function 'accumarray' accepts only double variable,
% so all indices are forced into double at this point.
% A row in matrix 'lin2accum_aJ' contains the J indices (into the
% accumulation array) of all the votings that are introduced by a
% same pixel in the image. Similarly with matrix 'lin2accum_aI'.
rr_4linaccum = double( prm_r_range );
linaccum_dr = [ (-rr_4linaccum(2) + 0.5) : -rr_4linaccum(1) , ...
(rr_4linaccum(1) + 0.5) : rr_4linaccum(2) ];
lin2accum_aJ = floor( ...
double(grdx(grdmasklin)./grdmag(grdmasklin)) * linaccum_dr + ...
repmat( double(grdmask_IdxJ)+0.5 , [1,length(linaccum_dr)] ) ...
);
lin2accum_aI = floor( ...
double(grdy(grdmasklin)./grdmag(grdmasklin)) * linaccum_dr + ...
repmat( double(grdmask_IdxI)+0.5 , [1,length(linaccum_dr)] ) ...
);
% Clip the votings that are out of the accumulation array
mask_valid_aJaI = ...
lin2accum_aJ > 0 & lin2accum_aJ < (size(grdmag,2) + 1) & ...
lin2accum_aI > 0 & lin2accum_aI < (size(grdmag,1) + 1);
mask_valid_aJaI_reverse = ~ mask_valid_aJaI;
lin2accum_aJ = lin2accum_aJ .* mask_valid_aJaI + mask_valid_aJaI_reverse;
lin2accum_aI = lin2accum_aI .* mask_valid_aJaI + mask_valid_aJaI_reverse;
clear mask_valid_aJaI_reverse;
% Linear indices (of the votings) into the accumulation array
lin2accum = sub2ind( size(grdmag), lin2accum_aI, lin2accum_aJ );
lin2accum_size = size( lin2accum );
lin2accum = reshape( lin2accum, [numel(lin2accum),1] );
clear lin2accum_aI lin2accum_aJ;
% Weights of the votings, currently using the gradient maginitudes
% but in fact any scheme can be used (application dependent)
weight4accum = ...
repmat( double(grdmag(grdmasklin)) , [lin2accum_size(2),1] ) .* ...
mask_valid_aJaI(:);
clear mask_valid_aJaI;
% Build the accumulation array using Matlab function 'accumarray'
accum = accumarray( lin2accum , weight4accum );
accum = [ accum ; zeros( numel(grdmag) - numel(accum) , 1 ) ];
accum = reshape( accum, size(grdmag) );
%%%%%%%% Locating local maxima in the accumulation array %%%%%%%%%%%%
% Stop if no need to locate the center positions of circles
if ~func_compu_cen,
return;
end
clear lin2accum weight4accum;
% Parameters to locate the local maxima in the accumulation array
% -- Segmentation of 'accum' before locating LM
prm_useaoi = true;
prm_aoithres_s = 2;
prm_aoiminsize = floor(min([ min(size(accum)) * 0.25, ...
prm_r_range(2) * 1.5 ]));
% -- Filter for searching for local maxima
prm_fltrLM_s = 1.35;
prm_fltrLM_r = ceil( prm_fltrLM_R * 0.6 );
prm_fltrLM_npix = max([ 6, ceil((prm_fltrLM_R/2)^1.8) ]);
% -- Lower bound of the intensity of local maxima
prm_LM_LoBndRa = 0.2; % minimum ratio of LM to the max of 'accum'
% Smooth the accumulation array
fltr4accum = fltr4accum / sum(fltr4accum(:));
accum = filter2( fltr4accum, accum );
% Select a number of Areas-Of-Interest from the accumulation array
if prm_useaoi,
% Threshold value for 'accum'
prm_llm_thres1 = prm_grdthres * prm_aoithres_s;
% Thresholding over the accumulation array
accummask = ( accum > prm_llm_thres1 );
% Segmentation over the mask
[accumlabel, accum_nRgn] = bwlabel( accummask, 8 );
% Select AOIs from segmented regions
accumAOI = ones(0,4);
for k = 1 : accum_nRgn,
accumrgn_lin = find( accumlabel == k );
[accumrgn_IdxI, accumrgn_IdxJ] = ...
ind2sub( size(accumlabel), accumrgn_lin );
rgn_top = min( accumrgn_IdxI );
rgn_bottom = max( accumrgn_IdxI );
rgn_left = min( accumrgn_IdxJ );
rgn_right = max( accumrgn_IdxJ );
% The AOIs selected must satisfy a minimum size
if ( (rgn_right - rgn_left + 1) >= prm_aoiminsize && ...
(rgn_bottom - rgn_top + 1) >= prm_aoiminsize ),
accumAOI = [ accumAOI; ...
rgn_top, rgn_bottom, rgn_left, rgn_right ];
end
end
else
% Whole accumulation array as the one AOI
accumAOI = [1, size(accum,1), 1, size(accum,2)];
end
% Thresholding of 'accum' by a lower bound
prm_LM_LoBnd = max(accum(:)) * prm_LM_LoBndRa;
% Build the filter for searching for local maxima
fltr4LM = zeros(2 * prm_fltrLM_R + 1);
[mesh4fLM_x, mesh4fLM_y] = meshgrid(-prm_fltrLM_R : prm_fltrLM_R);
mesh4fLM_r = sqrt( mesh4fLM_x.^2 + mesh4fLM_y.^2 );
fltr4LM_mask = ...
( mesh4fLM_r > prm_fltrLM_r & mesh4fLM_r <= prm_fltrLM_R );
fltr4LM = fltr4LM - ...
fltr4LM_mask * (prm_fltrLM_s / sum(fltr4LM_mask(:)));
if prm_fltrLM_R >= 4,
fltr4LM_mask = ( mesh4fLM_r < (prm_fltrLM_r - 1) );
else
fltr4LM_mask = ( mesh4fLM_r < prm_fltrLM_r );
end
fltr4LM = fltr4LM + fltr4LM_mask / sum(fltr4LM_mask(:));
% **** Debug code (begin)
if dbg_on,
dbg_LMmask = zeros(size(accum));
end
% **** Debug code (end)
% For each of the AOIs selected, locate the local maxima
circen = zeros(0,2);
for k = 1 : size(accumAOI, 1),
aoi = accumAOI(k,:); % just for referencing convenience
% Thresholding of 'accum' by a lower bound
accumaoi_LBMask = ...
( accum(aoi(1):aoi(2), aoi(3):aoi(4)) > prm_LM_LoBnd );
% Apply the local maxima filter
candLM = conv2( accum(aoi(1):aoi(2), aoi(3):aoi(4)) , ...
fltr4LM , 'same' );
candLM_mask = ( candLM > 0 );
% Clear the margins of 'candLM_mask'
candLM_mask([1:prm_fltrLM_R, (end-prm_fltrLM_R+1):end], :) = 0;
candLM_mask(:, [1:prm_fltrLM_R, (end-prm_fltrLM_R+1):end]) = 0;
% **** Debug code (begin)
if dbg_on,
dbg_LMmask(aoi(1):aoi(2), aoi(3):aoi(4)) = ...
dbg_LMmask(aoi(1):aoi(2), aoi(3):aoi(4)) + ...
accumaoi_LBMask + 2 * candLM_mask;
end
% **** Debug code (end)
% Group the local maxima candidates by adjacency, compute the
% centroid position for each group and take that as the center
% of one circle detected
[candLM_label, candLM_nRgn] = bwlabel( candLM_mask, 8 );
for ilabel = 1 : candLM_nRgn,
% Indices (to current AOI) of the pixels in the group
candgrp_masklin = find( candLM_label == ilabel );
[candgrp_IdxI, candgrp_IdxJ] = ...
ind2sub( size(candLM_label) , candgrp_masklin );
% Indices (to 'accum') of the pixels in the group
candgrp_IdxI = candgrp_IdxI + ( aoi(1) - 1 );
candgrp_IdxJ = candgrp_IdxJ + ( aoi(3) - 1 );
candgrp_idx2acm = ...
sub2ind( size(accum) , candgrp_IdxI , candgrp_IdxJ );
% Minimum number of qulified pixels in the group
if sum(accumaoi_LBMask(candgrp_masklin)) < prm_fltrLM_npix,
continue;
end
% Compute the centroid position
candgrp_acmsum = sum( accum(candgrp_idx2acm) );
cc_x = sum( candgrp_IdxJ .* accum(candgrp_idx2acm) ) / ...
candgrp_acmsum;
cc_y = sum( candgrp_IdxI .* accum(candgrp_idx2acm) ) / ...
candgrp_acmsum;
circen = [circen; cc_x, cc_y];
end
end
% **** Debug code (begin)
if dbg_on,
figure(dbg_bfigno); imagesc(dbg_LMmask); axis image;
title('Generated map of local maxima');
if size(accumAOI, 1) == 1,
figure(dbg_bfigno+1);
surf(candLM, 'EdgeColor', 'none'); axis ij;
title('Accumulation array after local maximum filtering');
end
end
% **** Debug code (end)
%%%%%%%% Estimation of the Radii of Circles %%%%%%%%%%%%
% Stop if no need to estimate the radii of circles
if ~func_compu_radii,
varargout{1} = circen;
return;
end
% Parameters for the estimation of the radii of circles
fltr4SgnCv = [2 1 1];
fltr4SgnCv = fltr4SgnCv / sum(fltr4SgnCv);
% Find circle's radius using its signature curve
cirrad = zeros( size(circen,1), 1 );
for k = 1 : size(circen,1),
% Neighborhood region of the circle for building the sgn. curve
circen_round = round( circen(k,:) );
SCvR_I0 = circen_round(2) - prm_r_range(2) - 1;
if SCvR_I0 < 1,
SCvR_I0 = 1;
end
SCvR_I1 = circen_round(2) + prm_r_range(2) + 1;
if SCvR_I1 > size(grdx,1),
SCvR_I1 = size(grdx,1);
end
SCvR_J0 = circen_round(1) - prm_r_range(2) - 1;
if SCvR_J0 < 1,
SCvR_J0 = 1;
end
SCvR_J1 = circen_round(1) + prm_r_range(2) + 1;
if SCvR_J1 > size(grdx,2),
SCvR_J1 = size(grdx,2);
end
% Build the sgn. curve
SgnCvMat_dx = repmat( (SCvR_J0:SCvR_J1) - circen(k,1) , ...
[SCvR_I1 - SCvR_I0 + 1 , 1] );
SgnCvMat_dy = repmat( (SCvR_I0:SCvR_I1)' - circen(k,2) , ...
[1 , SCvR_J1 - SCvR_J0 + 1] );
SgnCvMat_r = sqrt( SgnCvMat_dx .^2 + SgnCvMat_dy .^2 );
SgnCvMat_rp1 = round(SgnCvMat_r) + 1;
f4SgnCv = abs( ...
double(grdx(SCvR_I0:SCvR_I1, SCvR_J0:SCvR_J1)) .* SgnCvMat_dx + ...
double(grdy(SCvR_I0:SCvR_I1, SCvR_J0:SCvR_J1)) .* SgnCvMat_dy ...
) ./ SgnCvMat_r;
SgnCv = accumarray( SgnCvMat_rp1(:) , f4SgnCv(:) );
SgnCv_Cnt = accumarray( SgnCvMat_rp1(:) , ones(numel(f4SgnCv),1) );
SgnCv_Cnt = SgnCv_Cnt + (SgnCv_Cnt == 0);
SgnCv = SgnCv ./ SgnCv_Cnt;
% Suppress the undesired entries in the sgn. curve
% -- Radii that correspond to short arcs
SgnCv = SgnCv .* ( SgnCv_Cnt >= (pi/4 * [0:(numel(SgnCv_Cnt)-1)]') );
% -- Radii that are out of the given range
SgnCv( 1 : (round(prm_r_range(1))+1) ) = 0;
SgnCv( (round(prm_r_range(2))+1) : end ) = 0;
% Get rid of the zero radius entry in the array
SgnCv = SgnCv(2:end);
% Smooth the sgn. curve
SgnCv = filtfilt( fltr4SgnCv , [1] , SgnCv );
% Get the maximum value in the sgn. curve
SgnCv_max = max(SgnCv);
if SgnCv_max <= 0,
cirrad(k) = 0;
continue;
end
% Find the local maxima in sgn. curve by 1st order derivatives
% -- Mark the ascending edges in the sgn. curve as 1s and
% -- descending edges as 0s
SgnCv_AscEdg = ( SgnCv(2:end) - SgnCv(1:(end-1)) ) > 0;
% -- Mark the transition (ascending to descending) regions
SgnCv_LMmask = [ 0; 0; SgnCv_AscEdg(1:(end-2)) ] & (~SgnCv_AscEdg);
SgnCv_LMmask = SgnCv_LMmask & [ SgnCv_LMmask(2:end) ; 0 ];
% Incorporate the minimum value requirement
SgnCv_LMmask = SgnCv_LMmask & ...
( SgnCv(1:(end-1)) >= (prm_multirad * SgnCv_max) );
% Get the positions of the peaks
SgnCv_LMPos = sort( find(SgnCv_LMmask) );
% Save the detected radii
if isempty(SgnCv_LMPos),
cirrad(k) = 0;
else
cirrad(k) = SgnCv_LMPos(end);
for i_radii = (length(SgnCv_LMPos) - 1) : -1 : 1,
circen = [ circen; circen(k,:) ];
cirrad = [ cirrad; SgnCv_LMPos(i_radii) ];
end
end
end
% Output
varargout{1} = circen;
varargout{2} = cirrad;
if nargout > 3,
varargout{3} = dbg_LMmask;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -