📄 difequation.cpp
字号:
//梁霄 11/24/2005
#include"DifEquation.h"
//欧拉方法和改进欧拉方法
double Euler::f(double x,double y)
{
return y-2*x/y;
}
void Euler::CommonEuler(double x0,double y0,double step)
{
double yn=0.0;
cout<<"--------Euler Method--------"<<endl;
for(int i=0;i<=10;i++)
{
if(i==0)
yn=y0;
else
{
yn+=step*f(x0,yn);
x0+=step;
}
cout<<"x:"<<x0<<'\t'<<"y:"<<yn<<endl;
}
}
void Euler::ImprEuler(double x0,double y0,double step)
{
double yp=0.0,yc=0.0,yn=0.0;
cout<<"--------Improved Euler Method--------"<<endl;
for(int i=0;i<=10;i++)
{
if(i==0)
yn=y0;
else
{
yp=yn+step*f(x0,yn);
yc=yn+step*f(x0+step,yp);
yn=0.5*(yp+yc);
x0+=step;
}
cout<<"x:"<<x0<<'\t'<<"y:"<<yn<<endl;
}
}
//四阶龙格库塔方法
double RongeKutta::f(double x,double y)
{
return y-2*x/y;
}
void RongeKutta::RongeKutta4(double x0,double y0,double step)
{
double yn=0.0,K1=0.0,K2=0.0,K3=0.0,K4=0.0;
cout<<"--------4-Order Ronge-Kutta Method--------"<<endl;
for(int i=0;i<=10;i++)
{
if(i==0)
yn=y0;
else
{
K1=f(x0,yn);
K2=f(x0+step/2,yn+step*K1/2);
K3=f(x0+step/2,yn+step*K2/2);
K4=f(x0+step,yn+step*K3);
yn+=step*(K1+2*K2+2*K3+K4)/6;
x0+=step;
}
cout<<"x:"<<x0<<'\t'<<"y:"<<yn<<endl;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -