📄 pe_hdd_awgn.c
字号:
// ------------------------------------------------------------------------
// file: pe_hdd_awgn.c
//
// Probability of decoding error (block error) for a binary code with
// binary transmission over an AWGN channel and hard-decision decoding
// ------------------------------------------------------------------------
// This program is complementary material for the book:
//
// R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.
//
// ISBN 0471 49581 6
//
// This and other programs are available at http://the-art-of-ecc.com
//
// You may use this program for academic and personal purposes only.
// If this program is used to perform simulations whose results are
// published in a journal or book, please refer to the book above.
//
// The use of this program in a commercial product requires explicit
// written permission from the author. The author is not responsible or
// liable for damage or loss that may be caused by the use of this program.
//
// Copyright (c) 2002. Robert H. Morelos-Zaragoza. All rights reserved.
// ------------------------------------------------------------------------
#include <stdio.h>
#include <math.h>
#define NMAX 64 // Maximum code length
main(argc,argv)
int argc;
char **argv;
{
int n, k;
int t, dmin;
double a[NMAX+1]; // Weight distribution
double sum, p, Pe;
double rate;
int i, n_max, ki;
int d_hi[64];
double d_h[64],n_d[64];
double prob_sphere(int n, int k, int j, double p);
double fact(double a);
double comb(double a, double b);
double Q(double a);
double init,final,inc,eb_no_db,es_no;
char name1[80], name2[80];
FILE *fp1,*fp2;
if (argc != 9)
{
printf("Usage: %s n k d_min file_WD file_Pe init_SNR final_SNR inc_SNR\n",
argv[0]);
exit(1);
}
sscanf(argv[1], "%d", &n);
sscanf(argv[2], "%d", &k);
sscanf(argv[3], "%d", &dmin);
sscanf(argv[4], "%s", name2);
sscanf(argv[5], "%s", name1);
sscanf(argv[6], "%lf", &init);
sscanf(argv[7], "%lf", &final);
sscanf(argv[8], "%lf", &inc);
rate = (double) k / (double) n;
t = floor(dmin-1)/2;
fp1 = fopen(name1,"w");
fp2 = fopen(name2,"r");
n_max = 0;
while(fscanf(fp2,"%d %lf\n",&d_hi[n_max],&n_d[n_max])!=EOF)
{
n_max++;
}
fclose(fp2);
for (i=0;i<n_max;i++)
d_h[i] = (double) d_hi[i];
for (eb_no_db = init; eb_no_db<=final; eb_no_db+=inc)
{
es_no = pow(10.0,(eb_no_db/10.0)); /* snr per bit */
es_no = es_no*rate; /* snr per symbol */
p = Q(sqrt(2.0*es_no));
Pe = 0.0;
for (i=0; i<n_max; i++)
{
sum = 0.0;
for (ki=0; ki<=t; ki++)
sum += prob_sphere(n, ki, d_hi[i], p);
Pe += ( n_d[i] * sum );
}
fprintf(fp1,"%lf %e\n", eb_no_db, Pe);
}
}
// Probability of error patterns centered at a word of weight j, within
// radius k. For words of length n and probability of a bit error p.
//
double prob_sphere(int n, int k, int j, double p)
{
double sum;
double term1, term2, term3, term4;
double comb(double a, double b);
int r;
sum = 0;
for (r=0; r<=k; r++)
{
term1 = comb((double) j, (double)(k-r));
term2 = comb((double) (n-j), (double) r);
term3 = pow( p, (double)(j-k+2*r));
term4 = pow((1.0-p), (double)(n-j+k-2*r));
// printf("n = %d, k = %d, j = %d, r = %d, j-k+2r = %d, n-j+k-2r = %d\n",
// n, k, j, r, (j-k+2*r), (n-j+k-2*r));
sum += term1 * term2 * term3 * term4;
}
return(sum);
}
double fact(double a)
{
double i,tot;
tot = 1.0;
for (i=a;i>0.001;i=i-1.0)
{
tot = tot * i;
}
return(tot);
}
double comb(double a,double b)
{
double z,tot;
if (a<b)
return(1.0);
if (b > (a-b))
{
tot = 1.0/fact(a-b);
for (z=a;z>b;z=z-1.0)
{
tot = tot * z;
}
}
else
{
tot = 1.0/fact(b);
for (z=a;z>a-b;z=z-1.0)
{
tot = tot * z;
}
}
return(tot);
}
double Q(double a)
{
double erfc( double x );
return(0.5*erfc(a/sqrt(2.0)));
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -