⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rs_eedec_bm_c4p3.c

📁 详细讲述纠错码的书籍
💻 C
📖 第 1 页 / 共 2 页
字号:
// ------------------------------------------------------------------// File:    rs_eedec_bm_c4p3.c// Author:  Robert Morelos-Zaragoza// Date:    July 20, 2006//// The Reed-Somolon code is specified by the finite field, the length // (length <= 2^m-1), the number of redundant symbols (length-k), and // the initial zero of the code, init_zero, such that the zeros are://    init_zero, init_zero+1, ..., init_zero+length-k-1//// Update 8/17/03: Added a line to check for zero in computation of// erasure polynomial. Many thanks to Matteo Albanese, a graduate// student at Politecnico di Milano, for pointing this out.//// ERRORS AND ERASURES CORRECTION WITH BERLEKAMP-MASSEY'S ALGORITHM//// Copyright 2002 (c) Robert H. Morelos-Zaragoza. All rights reserved//// MODIFIED FOR CHAPTER 4 PROBLEM 3 OF TEXTBOOK.// ------------------------------------------------------------------#include <math.h>#include <stdio.h>#include <float.h>#include <limits.h>#include <stdlib.h>#define MAX_RANDOM LONG_MAX    // Maximum value of random() int i;int m, n, length, k, t, t2, d, red;int init_zero;int p[10];int alpha_to[1024], index_of[1024], g[1024];int recd[1024], data[1024], b[1024];int numerr, errpos[512], errval[512], decerror;int biterror, error;char filename[40], name2[40];int numera;int era[512], eraval[512];void read_p(void);void generate_gf(void);void gen_poly(void);void encode_rs(void);void bpsk_awgn(void);void decode_rs(void);int weight(int word);main(int argc, char *argv[]){  m=4;  length=15;  red=6;  init_zero=1;  k = length - red;  t = red/2;  t2 = 2*t;  read_p();        // Read m */  generate_gf();   // Construct the Galois Field GF(2^m) */  printf("--> This is an RS(%d,%d,%d) code over GF(2^%d), t = %d\n",          length, k, red+1, m, t);  printf("    with zeros: ");  for (i=0;i<t2;i++) printf("%d ", init_zero+i);  printf("\n\n");  gen_poly();      // Compute the generator polynomial of RS code */  for (i=0; i<length; i++)      recd[i]=0;  recd[3] = 11;  recd[6] = 8;  recd[12] = 3;  printf("\n\nRec =");  for (i=0; i<length; i++) {     printf("%4d ", index_of[recd[i]]);     }  printf("\n     ");  for (i=0; i<length; i++) {     printf("%4d ", recd[i]);     }  printf("\n");  decode_rs();   // DECODE received codeword recv[] */}void read_p()//      Read m, the degree of a primitive polynomial p(x) used to compute the//      Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read//      the code length.{  int i, ninf;  printf("\nSimulation of RS codes \n");  printf("Copyright 2002 (c)Robert Morelos-Zaragoza. All rights reserved.\n\n");  for (i=1; i<m; i++)    p[i] = 0;  p[0] = p[m] = 1;  p[1] = 1;  printf("Primitive polynomial of GF(2^%d), (LSB first)   p(x) = ",m);  n = 1;  for (i = 0; i <= m; i++)     {      n *= 2;      printf("%1d", p[i]);    }  printf("\n");  n = n / 2 - 1;}void generate_gf()// generate GF(2^m) from the irreducible polynomial p(X) in p[0]..p[m]//// lookup tables:  log->vector form           alpha_to[] contains j=alpha**i;//                 vector form -> log form    index_of[j=alpha**i] = i// alpha=2 is the primitive element of GF(2^m){register int i, mask;   mask = 1;   alpha_to[m] = 0;   for (i=0; i<m; i++)   {      alpha_to[i] = mask;      index_of[alpha_to[i]] = i;      if (p[i]!=0)       alpha_to[m] ^= mask;      mask <<= 1;    }  index_of[alpha_to[m]] = m;   mask >>= 1;   for (i=m+1; i<n; i++)   {      if (alpha_to[i-1] >= mask)        alpha_to[i] = alpha_to[m] ^ ((alpha_to[i-1]^mask)<<1);      else alpha_to[i] = alpha_to[i-1]<<1;      index_of[alpha_to[i]] = i;    }  index_of[0] = -1; #ifdef PRINT_GFprintf("Table of GF(%d):\n",n);printf("----------------------\n");printf("   i\tvector \tlog\n");printf("----------------------\n");for (i=0; i<=n; i++)printf("%4d\t%4x\t%4d\n", i, alpha_to[i], index_of[i]);#endif }void gen_poly()// Compute the generator polynomial of the t-error correcting, length// n=(2^m -1) Reed-Solomon code from the product of (X+alpha^i), for// i = init_zero, init_zero + 1, ..., init_zero+length-k-1{register int i,j;    g[0] = alpha_to[init_zero];  //  <--- vector form of alpha^init_zero   g[1] = 1;     // g(x) = (X+alpha^init_zero)   for (i=2; i<=length-k; i++)    {       g[i] = 1;      for (j=i-1; j>0; j--)        if (g[j] != 0)            g[j] = g[j-1]^ alpha_to[(index_of[g[j]]+i+init_zero-1)%n];         else           g[j] = g[j-1];       g[0] = alpha_to[(index_of[g[0]]+i+init_zero-1)%n];    }   // convert g[] to log form for quicker encoding    for (i=0; i<=length-k; i++)  g[i] = index_of[g[i]]; #ifdef PRINT_POLYprintf("Generator polynomial (independent term first):\ng(x) = ");for (i=0; i<=length-k; i++) printf("%5d", g[i]);printf("\n");#endif}void encode_rs()// Compute the 2t parity symbols in b[0]..b[2*t-1]// data[] is input and b[] is output in polynomial form.// Encoding is done by using a feedback shift register with connections// specified by the elements of g[].{   register int i,j;    int feedback;    for (i=0; i<length-k; i++)        b[i] = 0;    for (i=k-1; i>=0; i--)    {    feedback = index_of[data[i]^b[length-k-1]];       if (feedback != -1)        {         for (j=length-k-1; j>0; j--)          if (g[j] != -1)            b[j] = b[j-1]^alpha_to[(g[j]+feedback)%n];           else            b[j] = b[j-1];           b[0] = alpha_to[(g[0]+feedback)%n];         }       else        {         for (j=length-k-1; j>0; j--)          b[j] = b[j-1];         b[0] = 0;         }    }}void decode_rs(){   register int i,j,u,q;   int elp[33][1024], d[1026], l[1026], u_lu[1026], s[1025], forney[1025];   int count=0, syn_error=0, tau[512], root[512], loc[512], z[513];    int err[1024], reg[513], aux[513], omega[1025], phi[1025], phiprime[1025];   int degphi, ell, temp;   // Compute the syndromes#ifdef PRINT_SYNDROME   printf("\ns =         0 ");#endif   for (i=1; i<=t2; i++)    {       s[i] = 0;       for (j=0; j<length; j++)        if (recd[j]!=0)          s[i] ^= alpha_to[(index_of[recd[j]]+(i+init_zero-1)*j)%n];      // convert syndrome from vector form to log form  */      if (s[i]!=0)          syn_error=1;         // set flag if non-zero syndrome => error      //      // Note:    If the code is used only for ERROR DETECTION, then      //          exit program here indicating the presence of errors.      //      s[i] = index_of[s[i]]; #ifdef PRINT_SYNDROME   printf("%4d ", s[i]);#endif    }   if (syn_error)       // if syndromes are nonzero then try to correct    {     s[0] = 0;  // S(x) = 1 + s_1x + ...      // TO HANDLE ERASURES      if (numera)      // if erasures are present, compute the erasure locator polynomial, tau(x)        {          for (i=0; i<=t2; i++)             { tau[i] = 0; aux[i] = 0;}          aux[1] = alpha_to[era[0]];          aux[0] = 1;       // (X + era[0])           if (numera>1)            for (i=1; i<numera; i++)              {              p[1] = era[i];              p[0] = 0;              for (j=0; j<2; j++)                for (ell=0; ell<=i; ell++)                  // Line below added 8/17/2003                  if ((p[j] !=-1) && (aux[ell]!=0))                    tau[j+ell] ^= alpha_to[(p[j]+index_of[aux[ell]])%n];              if (i != (numera-1))              for (ell=0; ell<=(i+1); ell++)                {                aux[ell] = tau[ell];                tau[ell] = 0;                }              }          else {            tau[0] = aux[0]; tau[1] = aux[1];          }        // Put in index (log) form        for (i=0; i<=numera; i++)          tau[i] = index_of[tau[i]]; /* tau in log form */#ifdef PRINT_SYNDROMEprintf("\ntau =    ");for (i=0; i<=numera; i++)  printf("%4d ", tau[i]);printf("\nforney = ");#endif        // Compute FORNEY modified syndrome:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -