📄 pearl.c
字号:
// ------------------------------------------------------------------------
// Name: pearl.c
// Created: January 27, 2000
//
// Iterative probabilistic decoding of linear block codes
// Based on Pearl's Belief Propagation in Bayesian Networks
// ------------------------------------------------------------------------
// This program is complementary material for the book:
//
// R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.
//
// ISBN 0471 49581 6
//
// This and other programs are available at http://the-art-of-ecc.com
//
// You may use this program for academic and personal purposes only.
// If this program is used to perform simulations whose results are
// published in a journal or book, please refer to the book above.
//
// The use of this program in a commercial product requires explicit
// written permission from the author. The author is not responsible or
// liable for damage or loss that may be caused by the use of this program.
//
// Copyright (c) 2002. Robert H. Morelos-Zaragoza. All rights reserved.
// ------------------------------------------------------------------------
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <stdlib.h>
#define MAX_RANDOM LONG_MAX // Maximum value of random()
#define NODES 275 // Maximum of number of code/check nodes
#define J 17 // Maximum number of checks per code bit
#define K 17 // Maximum number of code bits per check
int max_size_M;
int max_size_N;
int size_M[NODES]; // Size of row index sets
int size_N[NODES]; // Size of column index sets
int set_M[NODES][J]; // Column sets for code nodes
int set_N[NODES][K]; // Row sets for check nodes
int n; // length
int k; // dimension
int nk; // redundancy
float rate; // code rate
int M,N; // Size of parity-check matrix
double init_snr, final_snr, snr_increment;
double sim, num_sim, ber, amp;
long seed;
int error;
int data[NODES], codeword[NODES];
int data_int;
double snr, snr_rms;
float transmited[NODES], received[NODES];
int hard[NODES], decoded[NODES];
int i,j, iter, max_iter;
char filename[40], name2[40];
FILE *fp, *fp2;
void initialize(void);
void awgn(void);
void encode(void);
void belprop(void);
main(int argc, char *argv[])
{
// Command line processing
if (argc != 11)
{
printf("Usage: %s length(n) dimension(k) file_parity-check max_iter init_snr final_snr snr_inc num_sim output_file seed\n",
argv[0]);
exit(0);
}
sscanf(argv[1],"%d", &n);
sscanf(argv[2],"%d", &k);
sscanf(argv[3],"%s", filename);
sscanf(argv[4],"%d", &max_iter);
sscanf(argv[5],"%lf", &init_snr);
sscanf(argv[6],"%lf", &final_snr);
sscanf(argv[7],"%lf", &snr_increment);
sscanf(argv[8],"%lf",&num_sim);
sscanf(argv[9],"%s", name2);
sscanf(argv[10],"%ld",&seed);
nk = n-k;
rate = (float) k / (float) n;
printf("\nITERATIVE PROBABILISTIC DECODING OF LINEAR BLOCK CODES\n");
printf("max_iter = %d\n", max_iter);
printf("SNR from %lf to %lf in increments of %lf\n",
init_snr, final_snr, snr_increment);
printf("%.0f codewords transmitted per SNR\n", num_sim);
printf("\nn=%d, k=%d, n-k=%d, and rate = %lf\n\n",n,k,nk,rate);
if ((fp = fopen(filename,"r")) != NULL)
{
fscanf(fp, "%d %d", &N, &M);
fscanf(fp, "%d %d", &max_size_N, &max_size_M);
for (i=0; i<M; i++)
fscanf(fp, "%d", &size_N[i]);
for (i=0; i<N; i++)
fscanf(fp, "%d", &size_M[i]);
for (i=0; i<M; i++)
{
for (j=0; j<size_N[i]; j++)
fscanf(fp, "%d", &set_N[i][j]);
}
for (i=0; i<N; i++)
{
for (j=0; j<size_M[i]; j++)
fscanf(fp, "%d", &set_M[i][j]);
}
}
else
{
printf("incorrect input file name ...\n");
exit(0);
}
fclose(fp);
#ifdef PRINT_MATRIX
printf("%d %d\n", N, M);
printf("%d %d\n", max_size_N, max_size_M);
for (i=0; i<M; i++)
printf("%4d", size_N[i]);
printf("\n");
for (i=0; i<N; i++)
printf("%4d", size_M[i]);
printf("\n");
for (i=0; i<M; i++)
{
for (j=0; j<size_N[i]; j++)
printf("%4d", set_N[i][j]);
printf("\n");
}
for (i=0; i<N; i++)
{
for (j=0; j<size_M[i]; j++)
printf("%4d", set_M[i][j]);
printf("\n");
}
printf("\n");
#endif
fp2 = fopen(name2,"w");
snr = init_snr;
srandom(seed);
// -------------------------------------------------------------------
// S I M U L A T I O N L O O P
// -------------------------------------------------------------------
while ( snr < (final_snr+0.001) )
{
initialize();
while (sim < num_sim) // <--- Fixed number of simulations
// while (ber < 1000) // <-- Minimum number of errors
{
// ---------- FOR CONVENIENCE, MAKE DATA EQUAL TO ZERO
for (i=0; i<k; i++)
data[i] = 0;
// ----------- BPSK MAPPING: "0" --> +1, "1" --> -1
for (i=0; i<n; i++)
transmited[i] = 1.0;
// ----------- ADDITIVE WHITE GAUSSIAN NOISE CHANNEL
awgn();
// ----------- ITERATIVE DECODING BY BELIEF PROPAGATION
belprop();
// ----------- COUNT THE NUMBER OF BIT ERRORS
// for (i=0; i<k; i++)
for (i=0; i<n; i++)
if (decoded[i]) ber++;
sim+=1.0;
}
printf("%lf \t%8.0lf %8.0lf \t%13.8e\n", snr, ber, (n*sim), (ber/(sim*n)));
fflush(stdout);
fprintf(fp2, "%lf %13.8e\n", snr, (ber/(sim*n)) );
fflush(fp2);
snr += snr_increment;
}
fclose(fp2);
}
void belprop()
{
//
// Iterative decoding by belief propagation in code's Bayesian network
// Based on Pearl's book and MacKay's paper
//
int i,j,l,iter;
float p1[NODES];
float qm0[NODES][NODES], qm1[NODES][NODES];
float rm0[NODES][NODES], rm1[NODES][NODES];
float delta_r[NODES][NODES];
float alpha;
float q0[NODES], q1[NODES];
// -------------------
// INITIALIZATION STEP
// -------------------
// Prior probabilities
for (i=0;i<N;i++)
{
// p1[i] = 1.0 / ( 1.0 + exp(fabs(received[i])*snr_rms) );
// p1[i] = 1.0 - exp(-snr_rms*fabs(received[i])) /
// (1.0+exp(-snr_rms*fabs(received[i])));
p1[i] = 1.0 / ( 1.0 + exp(received[i]*snr_rms) );
}
// For every (m,l) such that there is a link between parents and
// children, qm0[i][j] and qm1[i][j] are initialized to pl[j].
// Notation: pi (Pearl) = q (MacKay)
for (i=0; i<M; i++)
for (j=0; j<size_N[i]; j++)
{
qm0[i][j] = 0.0;
qm1[i][j] = 0.0;
}
for (i=0; i<N; i++) // run over code nodes
for (j=0; j<size_M[i]; j++) // run over children nodes
{
qm0[set_M[i][j]-1][i] = (1.0 - p1[i]);
qm1[set_M[i][j]-1][i] = p1[i];
}
iter = 0; // Counter of iterations
do {
// ---------------------------------------
// HORIZONTAL STEP = BOTTOM-UP PROPAGATION
// ---------------------------------------
// MacKay:
// Run through the checks m and compute, for each n in N(m) the
// probabilitiy of a check symbol when code symbol is 0 (or 1)
// given that the other code symbols have distribution qm0, qm1
//
// Pearl:
// Node x_m computes new "lambda" messages to be sent to its parents
// u_1, u_2, ..., u_K
for (i=0; i<M; i++)
for (j=0; j<size_N[i]; j++)
{
delta_r[i][set_N[i][j]-1] = 1.0;
for (l=0; l<size_N[i]; l++)
{
if (set_N[i][l] != set_N[i][j])
delta_r[i][set_N[i][j]-1] *= ( qm0[i][set_N[i][l]-1] -
qm1[i][set_N[i][l]-1] );
}
rm0[i][set_N[i][j]-1] = 0.5 * ( 1.0 + delta_r[i][set_N[i][j]-1] );
rm1[i][set_N[i][j]-1] = 0.5 * ( 1.0 - delta_r[i][set_N[i][j]-1] );
// Mind normalization
if (rm0[i][set_N[i][j]-1]==0.0)
{
rm0[i][set_N[i][j]-1] = 1.0e-10;
rm1[i][set_N[i][j]-1] = 1.0-1.0e-10;
}
}
// ------------------------------------
// VERTICAL STEP = TOP-DOWN PROPAGATION
// ------------------------------------
// MacKay:
// Take the computed values of rm0, rm1 and update the values of
// the probabilities qm0, qm1
//
// Pearl:
// Each node x_l computes new "pi" messages to be send to its
// children x_1, x_2, ..., x_J
for (i=0; i<N; i++)
for (j=0; j<size_M[i]; j++)
{
qm0[set_M[i][j]-1][i] = 1.0;
qm1[set_M[i][j]-1][i] = 1.0;
for (l=0; l<size_M[i]; l++)
if (set_M[i][l] != set_M[i][j])
{
qm0[set_M[i][j]-1][i] *= rm0[set_M[i][l]-1][i];
qm1[set_M[i][j]-1][i] *= rm1[set_M[i][l]-1][i];
}
qm0[set_M[i][j]-1][i] *= (1.0 - p1[i]);
qm1[set_M[i][j]-1][i] *= p1[i];
alpha = 1.0 / (qm0[set_M[i][j]-1][i]+qm1[set_M[i][j]-1][i]);
qm0[set_M[i][j]-1][i] *= alpha;
qm1[set_M[i][j]-1][i] *= alpha;
if (qm0[set_M[i][j]-1][i] == 0.0)
{ qm0[set_M[i][j]-1][i]=1.0e-10; qm1[set_M[i][j]-1][i]=1.0-1.0e-10; }
}
// MacKay: At this step we also compute the (unconditional) pseudo-
// posterior probalilities "q0, q1" to make tentative decisions
for (i=0; i<N; i++)
{
q0[i] = 1.0;
q1[i] = 1.0;
for (j=0; j<size_M[i]; j++)
{
q0[i] *= rm0[set_M[i][j]-1][i];
q1[i] *= rm1[set_M[i][j]-1][i];
}
q0[i] *= (1.0 - p1[i]);
q1[i] *= p1[i];
alpha = 1.0 / (q0[i]+q1[i]);
q0[i] *= alpha;
q1[i] *= alpha;
if (q1[i] > 0.5)
decoded[i] = 1;
else
decoded[i] = 0;
}
// Increment the number of iterations, and check if maximum reached
iter++;
} while (iter < max_iter);
}
void encode()
//
// Systematic encoding
//
{
//int i,j;
//for (j=0; j<n; j++)
// {
// if (j<k) // information position
// codeword[j] = data[j];
// else // redundant position
// {
// codeword[j] = 0;
// for (i=0; i<k; i++)
// // codeword[j] ^= ( data[i] * H[j-k][i] ) & 0x01;
// codeword[j] ^= ( data[i] * H[(j-k+i)%n] ) & 0x01;
// }
// }
}
void awgn()
//
// AWGN generation
//
{
double u1,u2,s,noise,randmum;
int i;
for (i=0; i<n; i++)
{
do {
randmum = (double)(random())/MAX_RANDOM;
u1 = randmum*2.0 - 1.0;
randmum = (double)(random())/MAX_RANDOM;
u2 = randmum*2.0 - 1.0;
s = u1*u1 + u2*u2;
} while( s >= 1);
noise = u1 * sqrt( (-2.0*log(s))/s );
received[i] = transmited[i] + noise/amp;
#ifdef NO_NOISE
received[i] = transmited[i];
#endif
}
}
void initialize()
{
amp = sqrt(2.0*rate*pow(10.0,(snr/10.0)));
ber = 0.0;
sim = 0.0;
// snr_rms = 2.0*rate*(pow(10.0,(snr/10.0))); // SNR per bit
// snr_rms = 2.0*(pow(10.0,(snr/10.0))); // SNR per symbol
snr_rms = 2.0*sqrt(2.0*rate*(pow(10.0,(snr/10.0)))); // SNR per bit
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -