📄 capacity.c
字号:
// ------------------------------------------------------------------------
// File: capacity.c
//
// Compute the constellation-constrained capacity of an AWGN channel
//
// References:
//
// G. Ungerboeck, "Channel Coding with Multilevel/Phase Signalling,"
// IEEE Trans. Info. Theory, vol. IT-28, no. 1, pp. 55-67, Jan. 1982.
//
// P. E. McIllree, "Channel Capacity Calculations for M-ary N-dimensional
// Signal Sets," Master's Thesis, School of Electronic Engineering, The
// University of South Australia, February 1995.
//
// M. Abramowitz and I.A. Stegun, Eds., "Handbook of Mathematical Functions,"
// Dover Publications: New York, 1972.
// ------------------------------------------------------------------------
// This program is complementary material for the book:
//
// R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, Wiley, 2002.
//
// ISBN 0471 49581 6
//
// This and other programs are available at http://the-art-of-ecc.com
//
// You may use this program for academic and personal purposes only.
// If this program is used to perform simulations whose results are
// published in a journal or book, please refer to the book above.
//
// The use of this program in a commercial product requires explicit
// written permission from the author. The author is not responsible or
// liable for damage or loss that may be caused by the use of this program.
//
// Copyright (c) 2002. Robert H. Morelos-Zaragoza. All rights reserved.
// ------------------------------------------------------------------------
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#define MAXRAND LONG_MAX // for random number generation
double gaussian(void);
main(int argc, char *argv[])
{
int i, j, k, l;
long seed;
int mod;
int dimension;
double nbits;
double snr, init_snr, final_snr, snr_increment;
double ebn0;
double sum, sum2;
FILE *fp;
char name2[40];
int npoints;
double x[16], y[16];
double aux, aux2, N0;
double cs, sn;
double z, w, rate;
// Coefficients and evaluation points for Hermite integration
double wp[10] = {
7.64043285560789861e-06,
1.34364574684723431e-03,
3.38743944571450600e-02,
2.40138611094110666e-01,
6.10862633765332230e-01,
6.10862633765332230e-01,
2.40138611094110666e-01,
3.38743944571450600e-02,
1.34364574684723431e-03,
7.64043285560789861e-06
};
// Used for one-dimensional constellations
double xp[10] = {
3.43615911883773739e+00,
2.53273167423278966e+00,
1.75668364929988163e+00,
1.03661082978951358e+00,
3.42901327223704588e-01,
-3.42901327223704588e-01,
-1.03661082978951358e+00,
-1.75668364929988163e+00,
-2.53273167423278966e+00,
-3.43615911883773739e+00
};
// Used for two-dimensional constellations
double yp[10] = {
3.43615911883773739e+00,
2.53273167423278966e+00,
1.75668364929988163e+00,
1.03661082978951358e+00,
3.42901327223704588e-01,
-3.42901327223704588e-01,
-1.03661082978951358e+00,
-1.75668364929988163e+00,
-2.53273167423278966e+00,
-3.43615911883773739e+00
};
// Command line processing
if (argc != 7)
{
printf("Usage: %s modulation (1=BPSK 2=QPSK 3=8PSK 4=16QAM 5=64QAM) init_snr final_snr snr_inc output_file seed\n",
argv[0]);
exit(0);
}
sscanf(argv[1],"%d", &mod);
sscanf(argv[2],"%lf", &init_snr);
sscanf(argv[3],"%lf", &final_snr);
sscanf(argv[4],"%lf", &snr_increment);
sscanf(argv[5],"%s", name2);
sscanf(argv[6],"%ld",&seed);
time(&seed);
srandom(seed);
fp = fopen(name2,"w");
dimension = 2;
switch (mod) {
case 1: npoints = 2;
nbits = 1.0;
x[0] = -1.0;
x[1] = 1.0;
dimension = 1;
break;
case 2: npoints = 4;
nbits = 2.0;
x[0] = M_SQRT1_2; y[0] = M_SQRT1_2;
x[1] = -M_SQRT1_2; y[1] = M_SQRT1_2;
x[3] = -M_SQRT1_2; y[3] = -M_SQRT1_2;
x[2] = M_SQRT1_2; y[2] = -M_SQRT1_2;
break;
case 3: npoints = 8;
nbits = 3.0;
cs = cos(M_PI/8.0); sn = sin(M_PI/8.0);
x[0] = cs; y[0] = sn;
x[1] = sn; y[1] = cs;
x[3] = -sn; y[3] = cs;
x[2] = -cs; y[2] = sn;
x[4] = -cs; y[4] = -sn;
x[5] = -sn; y[5] = -cs;
x[7] = sn; y[7] = -cs;
x[6] = cs; y[6] = -sn;
break;
case 4: npoints = 16;
nbits = 4.0;
cs = 1.0/sqrt(10.0); // Normalized to unit energy
x[0] = 3.0*cs; y[0] = 1.0*cs;
x[1] = 3.0*cs; y[1] = 3.0*cs;
x[2] = 1.0*cs; y[2] = 3.0*cs;
x[3] = 1.0*cs; y[3] = 1.0*cs;
x[4] = x[0]-4.0*cs; y[4] = y[0];
x[5] = x[1]-4.0*cs; y[5] = y[1];
x[6] = x[2]-4.0*cs; y[6] = y[2];
x[7] = x[3]-4.0*cs; y[7] = y[3];
x[8] = x[4]; y[8] = y[4]-4.0*cs;
x[9] = x[5]; y[9] = y[5]-4.0*cs;
x[10]= x[6]; y[10]= y[6]-4.0*cs;
x[11]= x[7]; y[11]= y[7]-4.0*cs;
x[12]= x[0]; y[12]= y[0]-4.0*cs;
x[13]= x[1]; y[13]= y[1]-4.0*cs;
x[14]= x[2]; y[14]= y[2]-4.0*cs;
x[15]= x[3]; y[15]= y[3]-4.0*cs;
break;
default: printf("Modulation format = %d is not implemented... exiting\n",
mod);
exit(0);
break;
}
printf("dimension = %d\n", dimension);
printf(" SNR \t EBN0 \t RATE\n");
snr = init_snr;
while ( snr < (final_snr+0.001) ) {
switch (dimension) {
// ------------------------------------------------
// One-dimentional modulation
// ------------------------------------------------
case 1: N0 = 2.0/pow(10.0,(snr/10.0));
sum = 0.0;
for (i=0; i<npoints; i++) {
// Numerical Hermite integration
for (k=0; k<10; k++) {
aux2 = 0;
for (j=0; j<npoints; j++)
aux2 += exp( -2.0*xp[k]*((x[i]-x[j])/sqrt(N0))
-((x[i]-x[j])*(x[i]-x[j])/N0) );
sum += wp[k]*log(aux2)/M_LN2;
}
}
sum /= (npoints * sqrt(M_PI));
rate = nbits - sum;
ebn0 = snr - 10.0*log10(2.0*rate);
break;
// ------------------------------------------------
// Two-dimensional modulations
// ------------------------------------------------
case 2: N0 = 1.0/pow(10.0,(snr/10.0));
sum2 = 0.0;
for (i=0; i<npoints; i++) {
// Numerical Hermite integration
for (k=0; k<10; k++) {
sum = 0;
for (l=0; l<10; l++) {
aux2 = 0;
for (j=0; j<npoints; j++)
aux2 += exp( -2.0*((xp[k]*(x[i]-x[j])
+yp[l]*(y[i]-y[j]))/sqrt(N0))
-((x[i]-x[j])*(x[i]-x[j])+
(y[i]-y[j])*(y[i]-y[j]))/N0);
sum += wp[l]*log(aux2)/M_LN2;
}
sum2 += wp[k]*sum;
}
}
sum2 /= (npoints*M_PI);
rate = nbits - sum2;
ebn0 = snr - 10.0*log10(rate);
break;
}
printf("%lf \t %lf \t %lf\n", snr, ebn0, rate);
fprintf(fp, "%lf \t %lf\n", ebn0, rate);
fflush(stdout);
snr += snr_increment;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -