📄 main.m
字号:
%------基本粒子群优化算法(Particle Swarm Optimization)----------- %------名称:基本粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法 %------作者:孙明杰(dreamsun2001@126.com) %------单位:中国矿业大学理学院计算数学硕2005 %------时间:2006年8月17日 <CopyRight@dReAmsUn> %------------------------------------------------------------------ %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962; %学习因子1 c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=1000; %最大迭代次数 D=6; %搜索空间维数(未知数个数) N=40; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); %Pg为全局最优 for i=2:N if fitness(x(i,:),D)<fitness(pg,D) pg=x(i,:); end end %------进入主要循环,按照公式依次迭代,直到满足精度要求------------ for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:); if fitness(x(i,:),D)<p(i) p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end if p(i)<fitness(pg,D) pg=y(i,:); end end Pbest(t)=fitness(pg,D); end %------最后给出计算结果 disp('*************************************************************') disp('函数的全局最优位置为:') Solution=pg' disp('最后得到的优化极值为:') Result=fitness(pg,D) disp('*************************************************************') %------算法结束---DreamSun GL &
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -