📄 lib_bgnfp.h
字号:
#ifndef _BGNFP_H
#define _BGNFP_H
#include "lib_type.h"
/**
* for test only
*
* to query the status of BGNFP Module
*
**/
void print_bgn_fp_status();
/**
*
* start BGNFP module
*
**/
BGNFP_MD_ID bgn_fp_start( const BIGINT *p );
/**
*
* end BGNFP module
*
**/
void bgn_fp_end(BGNFP_MD_ID bgnfp_md_id);
/**
* clone src to des
* return des where des = src
**/
void bgn_fp_clone(BGNFP_MD_ID bgnfp_md_id,const BIGINT * src,BIGINT * des);
/**
* compare a and b
* if a > b, then return 1
* if a = b, then return 0
* if a < b, then return -1
**/
int bgn_fp_cmp(BGNFP_MD_ID bgnfp_md_id,const BIGINT * a,const BIGINT *b);
/**
*
* set a = 0
**/
void bgn_fp_set_zero(BGNFP_MD_ID bgnfp_md_id,BIGINT * a);
/**
*
* set a = 1
**/
void bgn_fp_set_one(BGNFP_MD_ID bgnfp_md_id,BIGINT * a);
/**
*
* set a = n
**/
void bgn_fp_set_word(BGNFP_MD_ID bgnfp_md_id,BIGINT *a,const UINT32 n);
/**
* return e = 2 ^ nth mod p
* = ( 1 << nth ) mod p
* where nth = 0,1,...,{BIGINTSIZE - 1}
*
**/
void bgn_fp_set_e(BGNFP_MD_ID bgnfp_md_id,BIGINT *e,const UINT32 nth);
/**
*
* set a = 2^ {BIGINTSIZE} - 1 mod p
**/
void bgn_fp_set_max(BGNFP_MD_ID bgnfp_md_id,BIGINT * a);
/**
*
* if src = 0, then return EC_TRUE
* if src !=0, then return EC_FALSE
*
**/
EC_BOOL bgn_fp_is_zero(BGNFP_MD_ID bgnfp_md_id,const BIGINT* src);
/**
*
* if src = 1, then return EC_TRUE
* if src !=1, then return EC_FALSE
*
**/
EC_BOOL bgn_fp_is_one(BGNFP_MD_ID bgnfp_md_id,const BIGINT* src);
/**
*
* if src is odd, then return EC_TRUE
* if src is even, then return EC_FALSE
*
**/
EC_BOOL bgn_fp_is_odd(BGNFP_MD_ID bgnfp_md_id,BIGINT *src);
/**
* let a belong to [0, p - 1], then
* c = ( a >> WORDSIZE ) mod n = (a >> nbits)
* return c
*
* maybe address of c = address of a
**/
void bgn_fp_shr_onewordsize(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,BIGINT *c);
/**
* let a belong to [0, p - 1], then
* c = ( a >> nbits ) mod p = (a >> nbits)
* return c
*
**/
void bgn_fp_shr_lesswordsize(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a, const UINT32 nbits,BIGINT *c);
/**
* let a belong to [0, p - 1], then
* c = ( a << WORDSIZE ) mod p
* return c
*
**/
void bgn_fp_shl_onewordsize(BGNFP_MD_ID bgnfp_md_id,const BIGINT * a, BIGINT * c);
/**
* let a belong to [0, p - 1], then
* c = ( a << nbits ) mod p
* return c
*
**/
void bgn_fp_shl_lesswordsize(BGNFP_MD_ID bgnfp_md_id,const BIGINT * a, const UINT32 nbits, BIGINT * c);
/**
** Let the NAF representative of k be
* k = SUM ( s_i * 2 ^ i, where s_i belong to {1,0,-1} and i = 0..n )
* Then return s = [ s_0,...,s_n ] and n
* i.e,
* s[ 0 ] = s_0,... s[ n ] = s_n
*
**/
int bgn_fp_naf(BGNFP_MD_ID bgnfp_md_id,const BIGINT *k,int *s);
/**
*
* c = ( a + b ) mod p
* where a < p and b < p
*
**/
void bgn_fp_add(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,const BIGINT *b, BIGINT *c );
/**
* c = ( a - b ) mod p
* where a < p and b < p
*
**/
void bgn_fp_sub(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,const BIGINT *b,BIGINT *c );
/**
void bgn_fp_neg(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,BIGINT *c );
* c = ( a * b ) mod p
* where a < p and b < p
*
**/
void bgn_fp_mul(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,const BIGINT *b,BIGINT *c );
/**
* c = ( a ^ 2 ) mod p
* where a < p
*
**/
void bgn_fp_squ(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,BIGINT *c );
/**
* c = ( a ^ e ) mod p
* where 0 < a < p and e < 2 ^ WORDSIZE
*
**/
void bgn_fp_sexp(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,const UINT32 e,BIGINT *c );
/**
* c = ( a ^ e ) mod p
* where 0 < a < p and e < 2 ^ BIGINTSIZE
*
**/
void bgn_fp_exp(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,const BIGINT *e,BIGINT *c );
/**
*
* if a = 0 , then return EC_FALSE
* if p > a > 0 and GCD(a,p) > 1, then return EC_FALSE
* if p > a > 0 and GCD(a,p) = 1, then return EC_TRUE and
* c = ( 1 / a ) mod p
* where 0 < a < p
*
**/
EC_BOOL bgn_fp_inv(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,BIGINT *c );
/**
*
* assume p is odd prime and a belong to [ 0.. p -1 ]
*
* return the legendre symbol (a/p)
*
**/
int bgn_fp_legendre(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a);
/**
*
* let p mod 8 = 3 or 5 or 7.
* and Legendre symbol (a/p) = 1, then
* compute one solution of congruence
* x^2 = a mod p
*
* Note:
* not support p mod 8 = 1 at present
*
**/
EC_BOOL bgn_fp_squroot(BGNFP_MD_ID bgnfp_md_id,const BIGINT *a,BIGINT *c);
#endif /* _LIB_BGNFP_H */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -