📄 bpsk_fading.m
字号:
% Program 3-2
% bpsk_fading.m
%
% Simulation program to realize BPSK transmission system
% (under one path fading)
%
% Programmed by H.Harada and T.Yamamura,
%
%******************** Preparation part **********************
clear all
sr=256000.0; % Symbol rate
ml=1; % Number of modulation levels
br=sr.*ml; % Bit rate (=symbol rate in this case)
nd = 100; % Number of symbols that simulates in each loop
%ebn0=10; % Eb/N0
IPOINT=8; % Number of oversamples
%******************* Filter initialization ********************
irfn=21; % Number of filter taps
alfs=0.5; % Rolloff factor
[xh] = hrollfcoef(irfn,IPOINT,sr,alfs,1); %Transmitter filter coefficients
[xh2] = hrollfcoef(irfn,IPOINT,sr,alfs,0); %Receiver filter coefficients
%******************* Fading initialization ********************
% If you use fading function "sefade", you can initialize all of parameters.
% Otherwise you can comment out the following initialization.
% The detailed explanation of all of valiables are mentioned in Program 2-8.
% Time resolution
tstp=1/sr/IPOINT;
% Arrival time for each multipath normalized by tstp
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
itau = [0];
% Mean power for each multipath normalized by direct wave.
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
dlvl = [0];
% Number of waves to generate fading for each multipath.
% In normal case, more than six waves are needed to generate Rayleigh fading
n0=[6];
% Initial Phase of delayed wave
% In this simulation four-path Rayleigh fading are considered.
th1=[0.0];
% Number of fading counter to skip
itnd0=nd*IPOINT*100;
% Initial value of fading counter
% In this simulation one-path Rayleigh fading are considered.
% Therefore one fading counter are needed.
itnd1=[1000];
% Number of directwave + Number of delayed wave
% In this simulation one-path Rayleigh fading are considered
now1=1;
% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=160;
% You can decide two mode to simulate fading by changing the variable flat
% flat : flat fading or not
% (1->flat (only amplitude is fluctuated),0->nomal(phase and amplitude are fluctutated)
flat =1;
%******************** START CALCULATION *********************
ebn0=0:40;
nloop=1000; % Number of simulation loops
for i=1:length(ebn0)
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
nodb=0;
noeb=0;
total=0;
for iii=1:nloop
%******************** Data generation ***********************
data=rand(1,nd)>0.5; % rand: built in function
%******************** BPSK Modulation ***********************
data1=data.*2-1;
[data2] = oversamp( data1, nd , IPOINT) ;
data3 = conv(data2,xh); % conv: built in function
%****************** Attenuation Calculation *****************
spow=sum(data3.*data3)/nd;
attn=0.5*spow*sr/br*10.^(-ebn0(i)/10);
attn=sqrt(attn);
%********************** Fading channel **********************
% Generated data are fed into a fading simulator
% In the case of BPSK, only Ich data are fed into fading counter
[ifade,qfade]=sefade(data3,zeros(1,length(data3)),itau,dlvl,th1,n0,itnd1,now1,length(data3),tstp,fd,flat);
% Updata fading counter
itnd1 = itnd1+ itnd0;
%************ Add White Gaussian Noise (AWGN) ***************
inoise=randn(1,length(ifade)).*attn; % randn: built in function
data4=ifade+inoise;
data5=conv(data4,xh2); % conv: built in function
sampl=irfn*IPOINT+1;
data6 = data5(sampl:8:8*nd+sampl-1);
%************ Add White Gaussian Noise (AWGN) bpsk no fading ***************
inoiseb=randn(1,length(data3)).*attn; % randn: built in function
datab4=data3+inoise;
datab5=conv(datab4,xh2); % conv: built in function
sampl=irfn*IPOINT+1;
datab6 = datab5(sampl:8:8*nd+sampl-1);
%******************** BPSK Demodulation *********************
demodata=data6 > 0;
demodatab=datab6> 0;
%******************** Bit Error Rate (BER) ******************
% count number of instantaneous errors
noe2=sum(abs(data-demodata)); % sum: built in function
noeb2=sum(abs(data-demodatab));
% count number of instantaneous transmitted data
nod2=length(data); % length: built in function
nodb2=nod2;
noe=noe+noe2;
noeb=noeb+noeb2;
nod=nod+nod2;
nodb=nodb+nodb2;
%fprintf('%d\t%e\n',iii,noe2/nod2);
end % for iii=1:nloop
%********************** Output result ***************************
ber(i) = noe/nod;
berb(i)=noeb/nodb;
%Q function
Qx=(1/2).*erfc(sqrt(10.^(ebn0./10)));
Fx=(1/2).*(1-1./sqrt(1+10.^(-ebn0./10)));
fprintf('%d\t%e\n',i,ber(i));
%fprintf('%d\t%d\t%d\t%e\n',ebn0,noe,nod,noe/nod);
%fid = fopen('BERbpskfad.dat','a');
%fprintf(fid,'%d\t%e\t%f\t%f\t\n',ebn0,noe/nod,noe,nod);
%fclose(fid);
end
%*************************************figure************************
figure;
semilogy(ebn0,Qx,'r-',ebn0,berb,'-',ebn0,Fx,'-',ebn0, ber, 'b-');
xlabel('Eb/No (dB)'); ylabel('BER');
title('Performance of BPSK');
axis([0 40 1E-4 1]);
legend('BPSK AWGN (Theory)','BPSK AWGN(Simulation)','BPSK Rayleigh (theory)','BPSK Rayleigh(Simulation)');
grid on;
%******************** end of file ***************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -