📄 mmc.c
字号:
// mmc.c : MultiMediaCard functions: init, read, write ...
//
// Rolf Freitag 5/2003
//
// MMC Lib
#ifndef _MMCLIB_C
#define _MMCLIB_C
//---------------------------------------------------------------------
#include "mmc.h"
#include <iolpc2138.h>
#include "math.h"
#include "string.h"
char mmcGetResponse(void);
char mmcGetXXResponse(const char resp);
char mmcCheckBusy(void);
void initSSP (void);
char mmc_buffer[512] = { 0 }; // Buffer for mmc i/o for data and registers
extern char card_state; // 0 for no card found, 1 for card found (init successfull)
//---------------------------------------------------------------------
void Delays (unsigned long a) { while (--a!=0); }
unsigned long SSPSetBaudRate(unsigned long baudrate, unsigned long systemfreq)
{
//Compute the new value for SPICK
//baudrate = systemfreq / (2 * (SPICK + 1))
unsigned long spick = ((systemfreq / baudrate) >> 1);
//Only divide ratios between 1 & 256 are supported
spick &= 0x0FF;
//Set the SPICK register
SSPCPSR = (spick & 0x0FF);
//SSPCR0_bit.SCR = (spick & 0x0FF);
//CPSDVSR = (spick & 0x0FF);
//Return the actual value achieved
return (systemfreq / ((spick + 1) << 1));
}
// setup usart1 in spi mode
void initSSP (void)
{
//set functionalite to pins:
//port0.17 -> SCK1
//port0.18 -> MISO0
//port0.19 -> MOSI0
//port0.20 -> SSEL1
PINSEL1_bit.P0_17 = 0x2;
PINSEL1_bit.P0_18 = 0x2;
PINSEL1_bit.P0_19 = 0x2;
PINSEL1_bit.P0_20 = 0x2;
SSPCR0_bit.CPHA = 0; //ClockPhase (active)
SSPCR0_bit.CPOL = 0; //ClockPlarity
SSPCR0_bit.FRF = 0; //Select SPI mode
SSPCR0_bit.DSS = 0x7; //8 bits data size
SSPCR1_bit.MS = 0; //Master mode (0) or Slave mode (1)
SSPCR1_bit.SSE = 1; //Enable SPI
//SSPSR_bit.TNF = 0;
//SSPSR_bit.RNE = 0;
//Char lenght (8 bite)
//SPICF_bit.CHR = 0;
//Set Baund Rate
//1st operand - data rate - must be max 1/8 from System frequency
//2nd operand - system freguency
SSPSetBaudRate(9600, 12000000);
}
// Initialisieren
char initMMC (void)
{
//raise SS and MOSI for 80 clock cycles
//SendByte(0xff) 10 times with SS high
//RAISE SS
int i;
char response=0x01;
// debug_printf("Start iniMMC......");
initSSP();
//initialization sequence on PowerUp
///CS_HIGH();
for(i=0;i<=9;i++)
spiSendByte(0xff);
///CS_LOW();
//Send Command 0 to put MMC in SPI mode
mmcSendCmd(0x00,0,0x95);
//Now wait for READY RESPONSE
if(mmcGetResponse()!=0x01);
// debug_printf("no responce");
while(response==0x01)
{
// debug_printf("Sending Command 1");
//CS_HIGH();
spiSendByte(0xff);
//CS_LOW();
mmcSendCmd(0x01,0x00,0xff);
response=mmcGetResponse();
}
//CS_HIGH();
spiSendByte(0xff);
// debug_printf("MMC INITIALIZED AND SET TO SPI MODE PROPERLY.");
return MMC_SUCCESS;
}
// Ti added mmc Get Responce
char mmcGetResponse(void)
{
//Response comes 1-8bytes after command
//the first bit will be a 0
//followed by an error code
//data will be 0xff until response
int i=0;
char response;
while(i<=64)
{
response=spiSendByte(0xff);
if(response==0x00)break;
if(response==0x01)break;
i++;
}
return response;
}
char mmcGetXXResponse(const char resp)
{
//Response comes 1-8bytes after command
//the first bit will be a 0
//followed by an error code
//data will be 0xff until response
int i=0;
char response;
while(i<=500)
{
response=spiSendByte(0xff);
if(response==resp)break;
i++;
}
return response;
}
char mmcCheckBusy(void)
{
//Response comes 1-8bytes after command
//the first bit will be a 0
//followed by an error code
//data will be 0xff until response
int i=0;
char response;
char rvalue;
while(i<=64)
{
response=spiSendByte(0xff);
response &= 0x1f;
switch(response)
{
case 0x05: rvalue=MMC_SUCCESS;break;
case 0x0b: return(MMC_CRC_ERROR);
case 0x0d: return(MMC_WRITE_ERROR);
default:
rvalue = MMC_OTHER_ERROR;
break;
}
if(rvalue==MMC_SUCCESS)break;
i++;
}
i=0;
do
{
response=spiSendByte(0xff);
i++;
}while(response==0);
return response;
}
// The card will respond with a standard response token followed by a data
// block suffixed with a 16 bit CRC.
// Ti Modification: long int -> long ; int -> long
char mmcReadBlock(const unsigned long address, const unsigned long count)
{
unsigned long i = 0;
char rvalue = MMC_RESPONSE_ERROR;
// Set the block length to read
if (mmcSetBlockLength (count) == MMC_SUCCESS) // block length could be set
{
// SS = LOW (on)
//CS_LOW ();
// send read command MMC_READ_SINGLE_BLOCK=CMD17
mmcSendCmd (17,address, 0xFF);
// Send 8 Clock pulses of delay, check if the MMC acknowledged the read block command
// it will do this by sending an affirmative response
// in the R1 format (0x00 is no errors)
if (mmcGetResponse() == 0x00)
{
// now look for the data token to signify the start of
// the data
if (mmcGetXXResponse(MMC_START_DATA_BLOCK_TOKEN) == MMC_START_DATA_BLOCK_TOKEN)
{
// clock the actual data transfer and receive the bytes; spi_read automatically finds the Data Block
for (i = 0; i < 512; i++)
mmc_buffer[i] = spiSendByte(0xff); // is executed with card inserted
// get CRC bytes (not really needed by us, but required by MMC)
spiSendByte(0xff);
spiSendByte(0xff);
rvalue = MMC_SUCCESS;
}
else
{
// the data token was never received
rvalue = MMC_DATA_TOKEN_ERROR; // 3
}
}
else
{
// the MMC never acknowledge the read command
rvalue = MMC_RESPONSE_ERROR; // 2
}
}
else
{
rvalue = MMC_BLOCK_SET_ERROR; // 1
}
//CS_HIGH ();
spiSendByte(0xff);
return rvalue;
} // mmc_read_block
//---------------------------------------------------------------------
// Ti Modification: long int -> long
char mmcWriteBlock (const unsigned long address)
{
unsigned long i = 0;
char rvalue = MMC_RESPONSE_ERROR; // MMC_SUCCESS;
//char c = 0x00;
// Set the block length to read
if (mmcSetBlockLength (512) == MMC_SUCCESS) // block length could be set
{
// SS = LOW (on)
//CS_LOW ();
// send write command
mmcSendCmd (24,address, 0xFF);
// check if the MMC acknowledged the write block command
// it will do this by sending an affirmative response
// in the R1 format (0x00 is no errors)
if (mmcGetXXResponse(MMC_R1_RESPONSE) == MMC_R1_RESPONSE)
{
spiSendByte(0xff);
// send the data token to signify the start of the data
spiSendByte(0xfe);
// clock the actual data transfer and transmitt the bytes
for (i = 0; i < 512; i++)
spiSendByte(mmc_buffer[i]); // mmc_buffer[i]; Test: i & 0xff
// put CRC bytes (not really needed by us, but required by MMC)
spiSendByte(0xff);
spiSendByte(0xff);
// read the data response xxx0<status>1 : status 010: Data accected, status 101: Data
// rejected due to a crc error, status 110: Data rejected due to a Write error.
mmcCheckBusy();
}
else
{
// the MMC never acknowledge the write command
rvalue = MMC_RESPONSE_ERROR; // 2
}
}
else
{
rvalue = MMC_BLOCK_SET_ERROR; // 1
}
//give the MMC the required clocks to finish up what ever it needs to do
//for (i = 0; i < 9; ++i)
//spiSendByte(0xff);
//CS_HIGH ();
// Send 8 Clock pulses of delay.
spiSendByte(0xff);
return rvalue;
}// mmc_write_block
//---------------------------------------------------------------------
void mmcSendCmd (const char cmd, unsigned long data, const char crc)
{
char frame[6];
char temp;
int i;
frame[0]=(cmd|0x40);
for(i=3;i>=0;i--){
temp=(char)(data>>(8*i));
frame[4-i]=(temp);
}
frame[5]=(crc);
for(i=0;i<6;i++)
spiSendByte(frame[i]);
}
//--------------- set blocklength 2^n ------------------------------------------------------
// Ti Modification: long int-> long
char mmcSetBlockLength (const unsigned long blocklength)
{
//char rValue = MMC_TIMEOUT_ERROR;
//char i = 0;
// SS = LOW (on)
//CS_LOW ();
// Set the block length to read
//MMC_SET_BLOCKLEN =CMD16
mmcSendCmd(16, blocklength, 0xFF);
// get response from MMC - make sure that its 0x00 (R1 ok response format)
if(mmcGetResponse()!=0x00);
//CS_HIGH ();
// Send 8 Clock pulses of delay.
spiSendByte(0xff);
return MMC_SUCCESS;
}
unsigned char spiSendByte(const unsigned char data)
{
/*
unsigned char spib;
//while(SSIOST_bit.BUSY != 0); // Wait until the character can be sent
SSIOINT_bit.TXCMP = 1; //clear interrupt register
SSIOBUF = data; // Send the data
while((SSIOINT & 0x02) != 0x02); // Wait for the transfer to complete
spib = SSIOBUF; // Get the data received
SSIOINT_bit.RXCMP = 1; //clear interrupt register
return spib; //return transmited character
*/
//NOTE!!! This function send character to SPI bus when mode is MASTER
//NOTE!!! This function receive character from SPI when mode is SLAVE
unsigned int spib;
//while(SSPSR_bit.BSY); // Wait until the character can be sent
while(SSPSR_bit.TNF == 0);
SSPDR = data; // Send the data
//while(!SPSR0_bit.SPIF); // Wait for the transfer to complete
while(SSPSR_bit.RNE == 0); // Wait until the character can be sent
spib = SSPDR; // Get the data received
return spib;
//return 0;
}
void spiWriteByte(const unsigned char data)
{
//while(SSIOST_bit.BUSY != 0); // Wait until the character can be sent
//SSIOINT_bit.TXCMP = 1; // clear interrupt register
//SSIOBUF = data;
}
unsigned char spiReadByte()
{
//unsigned char spib;
//while(SSIOINT_bit.RXCMP == 0);
//spib = SSIOBUF; // Get the data received
//SSIOINT_bit.RXCMP = 1; //clear interrupt register
//return spib;
return 0;
}
// Reading the contents of the CSD and CID registers in SPI mode is a simple
// read-block transaction.
char mmcReadRegister (const char cmd_register, const unsigned char length)
{
char uc = 0;
char rvalue = MMC_TIMEOUT_ERROR;
// char i = 0;
if (mmcSetBlockLength (length) == MMC_SUCCESS)
{
//CS_LOW ();
// CRC not used: 0xff as last byte
mmcSendCmd(cmd_register, 0x000000, 0xff);
// wait for response
// in the R1 format (0x00 is no errors)
if (mmcGetResponse() == 0x00)
{
if (mmcGetXXResponse(0xfe)== 0xfe)
for (uc = 0; uc < length; uc++)
mmc_buffer[uc] = spiSendByte(0xff);
// get CRC bytes (not really needed by us, but required by MMC)
spiSendByte(0xff);
spiSendByte(0xff);
}
else
rvalue = MMC_RESPONSE_ERROR;
// CS = HIGH (off)
//CS_HIGH ();
// Send 8 Clock pulses of delay.
spiSendByte(0xff);
}
//CS_HIGH ();
return rvalue;
}// mmc_read_register
//---------------------------------------------------------------------
#endif /* _MMCLIB_C */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -