📄 mcadaboostm1.m
字号:
% MCAdaBoostM1: implementation for AdaBoost.M1 meta-classifier
%
% Parameters:
% classifier: base classifier
% para: parameters
% 1. Iter: number of iteration, default: 10
% 2. SampleRatio: bootstrap sample ratio, default: 1
% X_train: training examples
% Y_train: training labels
% X_test: testing examples
% Y_test: testing labels
% num_class: number of classes
% class_set: set of class labels such as [1,-1], the first one is the
% positive label
%
% Output parameters:
% Y_compute: the predicted labels
% Y_prob: the prediction confidence in [0,1]
%
% Require functions:
% ParseParameter, GetModelFilename, CalculatePerformance, Classify
function [Y_compute, Y_prob] = MCAdaBoostM1(classifier, para, X_train, Y_train, X_test, Y_test, num_class, class_set)
global preprocess;
% Parameters
rand('state', 1);
p = str2num(char(ParseParameter(para, {'-Iter';'-SampleRatio'}, {'10';'1'})));
Max_Iter = p(1);
Sample_Ratio = p(2);
X_Sample = X_train;
Y_Sample = Y_train;
Y_compute_train_matrix = zeros(length(Y_train), num_class);
Y_compute_test_matrix = zeros(length(Y_test), num_class);
Y_compute = ones(size(Y_test));
Y_prob = ones(size(Y_test));
% Testing only
if (isempty(X_train)),
Y_compute_output = zeros(length(Y_test), Max_Iter);
for iter = 1:Max_Iter,
[Y_compute_test junk] = Classify(classifier, [], [], X_test, Y_test, num_class, class_set);
Y_compute_output(:, iter) = Y_compute_test;
CalculatePerformance(Y_compute_test, Y_test, class_set);
end;
model = load(strcat(GetModelFilename, '.mat'));
alpha = model.alpha;
clear model;
for iter = 1:Max_Iter,
Y_compute_test_matrix = UpdatePrediction(Y_compute_test_matrix, Y_compute_output(:, iter), alpha(iter), num_class, class_set);
end;
[Y_compute, Y_prob] = ConvertPrediction(Y_compute_test_matrix, num_class, class_set);
return;
end;
% Initialize the data
Dist = ones(length(Y_train), 1) ./ length(Y_train);
num_data = length(Y_train);
alpha = zeros(Max_Iter, 1);
for iter = 1:Max_Iter
% Compute scores for training data
[Y_compute_all junk] = Classify(classifier, X_Sample, Y_Sample, [X_train; X_test], [Y_train; Y_test], num_class, class_set);
Y_compute_train = Y_compute_all(1:length(Y_train), :);
Y_compute_test = Y_compute_all(length(Y_train)+1:length(Y_train)+length(Y_test), :);
% Compute the weighted errors
Weight_Err = sum(Dist .* (Y_compute_train ~= Y_train));
if Weight_Err == 0, fprintf('Terminated: Training Error is Zero!'); break, end;
if Weight_Err >= 0.5, fprintf('Terminated: Training Error is Larger than 0.5!'); break, end
beta = Weight_Err / (1 - Weight_Err);
alpha(iter) = -log(beta); % log(1/beta)
% Compure the training predictions
Y_compute_train_matrix = UpdatePrediction(Y_compute_train_matrix, Y_compute_train, alpha(iter), num_class, class_set);
[junk Index] = max(Y_compute_train_matrix, [], 2);
if (preprocess.Verbosity >= 1),
fprintf('%d: beta = %f, alpha = %f\n', iter, beta, alpha(iter));
fprintf('Training: ');
CalculatePerformance(class_set(Index), Y_train, class_set);
end;
% Compute the testing predictions
Y_compute_test_matrix = UpdatePrediction(Y_compute_test_matrix, Y_compute_test, alpha(iter), num_class, class_set);
[Y_compute, Y_prob] = ConvertPrediction(Y_compute_test_matrix, num_class, class_set);
if (preprocess.Verbosity >= 1),
fprintf('Testing: ');
CalculatePerformance(Y_compute, Y_test, class_set);
end;
% Compute the sampling distribution
Dist = Dist .* ((Y_compute_train ~= Y_train) + (Y_compute_train == Y_train) .* beta);
Dist = Dist ./ sum(Dist);
% Sample data and retrain the model
Y_Sample = [];
while (length(unique(Y_Sample)) < num_class),
num_samples = ceil(length(Y_train) * Sample_Ratio);
Sample_Idx = SampleDistribution(Dist, num_samples);
X_Sample = X_train(Sample_Idx, :);
Y_Sample = Y_train(Sample_Idx);
end;
end
% Save the parameters
if (preprocess.TrainOnly == 1),
save(strcat(GetModelFilename, '.mat'), 'alpha');
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Y_compute_matrix = UpdatePrediction(Y_compute_matrix, Y_compute, alpha, num_class, class_set)
for i = 1:num_class,
ind = find(Y_compute == class_set(i));
Y_compute_matrix(ind, i) = Y_compute_matrix(ind, i) + alpha;
end;
function [Y_compute, Y_prob] = ConvertPrediction(Y_compute_test_matrix, num_class, class_set)
Y_prob_matrix = exp(Y_compute_test_matrix - repmat(max(Y_compute_test_matrix, [], 2), 1, num_class));
[Y_prob Index] = max(Y_prob_matrix, [], 2);
Y_compute = class_set(Index);
% Convert Y_prob to posterior probability
sumYprob = sum(Y_prob_matrix, 2);
if (num_class == 2),
Y_prob = Y_prob_matrix(:, 1) ./ ((sumYprob == 0) + sumYprob);
else
Y_prob = Y_prob ./ ((sumYprob == 0) + sumYprob);
end;
% Sample the data based on pdf and output the index
function ret_vec = SampleDistribution(pdf, num_samples)
CumDist = cumsum(pdf);
Diff = CumDist * ones(1, num_samples) - ones(length(pdf), 1) * rand(1, num_samples);
Diff = (Diff <= 0) * 2 + Diff;
[C, I] = min(Diff);
ret_vec = I';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -