📄 mcbagging.m
字号:
% MCBagging: implementation for Bagging meta-classifier
%
% Parameters:
% classifier: base classifier
% para: parameters
% 1. Iter: number of iteration, default: 10
% 2. SampleRatio: bootstrap sample ratio, default: 1
% X_train: training examples
% Y_train: training labels
% X_test: testing examples
% Y_test: testing labels
% num_class: number of classes
% class_set: set of class labels such as [1,-1], the first one is the
% positive label
%
% Output parameters:
% Y_compute: the predicted labels
% Y_prob: the prediction confidence in [0,1]
%
% Require functions:
% ParseParameter, CalculatePerformance, Classify
function [Y_compute, Y_prob] = MCBagging(classifier, para, X_train, Y_train, X_test, Y_test, num_class, class_set)
rand('state', 1);
p = str2num(char(ParseParameter(para, {'-Iter';'-SampleRatio'}, {'10';'1'})));
num_sample = p(1);
sample_ratio = p(2);
X_Sample = X_train;
Y_Sample = Y_train;
Y_compute_train_matrix = zeros(length(Y_train), num_class);
Y_compute_test_matrix = zeros(length(Y_test), num_class);
for iter = 1:num_sample,
% Sample data and retrain the model
fprintf('Sample %d............\n', iter);
X_Sample = [];
Y_Sample = [];
if (~isempty(X_train)),
while (length(unique(Y_Sample)) < num_class),
num_samples = ceil(length(Y_train) * sample_ratio);
dist = ones(length(Y_train), 1) ./ length(Y_train);
sample_idx = SampleDistribution(dist, num_samples);
X_Sample = X_train(sample_idx, :);
Y_Sample = Y_train(sample_idx);
end;
end;
% Compute the predictions and voting
Y_compute_test = Classify(classifier, X_Sample, Y_Sample, X_test, Y_test, num_class, class_set);
for i = 1:num_class,
% Majority voting
ind = find(Y_compute_test == class_set(i));
Y_compute_test_matrix(ind, i) = Y_compute_test_matrix(ind, i) + 1 / num_sample;
end;
[Y_prob Index] = max(Y_compute_test_matrix, [], 2);
Y_compute = class_set(Index);
CalculatePerformance(Y_compute, Y_test, class_set);
end
if (num_class == 2),
Y_prob = Y_compute_test_matrix(:, 1);
end;
% Sample the data based on pdf and output the index
function ret_vec = SampleDistribution(pdf, num_samples)
CumDist = cumsum(pdf);
Diff = CumDist * ones(1, num_samples) - ones(length(pdf), 1) * rand(1, num_samples);
Diff = (Diff <= 0) * 2 + Diff;
[C, I] = min(Diff);
ret_vec = I';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -