📄 perceptronkernel.m
字号:
% PerceptronKernel: implementation for kernel perceptron
%
% Parameters:
% para: parameters
% 1. Kernel: kernel type, 0: linear, 1: poly, 2: RBF, default: 0
% 2. KernelParam: kernel parameter, default: 0.05
% 3. MaxIter: maximum iterations, default: 100
% 4. CostFactor: weighting between postive data and negative data, default: 1
% X_train: training examples
% Y_train: training labels
% X_test: testing examples
% Y_test: testing labels
% num_class: number of classes
% class_set: set of class labels such as [1,-1], the first one is the
% positive label
%
% Output parameters:
% Y_compute: the predicted labels
% Y_prob: the prediction confidence in [0,1]
%
% Require functions:
% ParseParameter, GetModelFilename, ordinalNormal
function [Y_compute, Y_prob] = PerceptronKernel(para, X_train, Y_train, X_test, Y_test, num_class, class_set)
global temp_model_file preprocess;
Y_compute = zeros(size(Y_test)); Y_prob = zeros(size(Y_test));
if (num_class > 2)
error('PerceptronKernel: The class number is larger than 2!');
end;
p = str2num(char(ParseParameter(para, {'-Kernel';'-KernelParam'; '-CostFactor'; '-MaxIter'}, {'0';'0.05';'1';'100'}, 1)));
KernelType = p(1);
KernelPara = p(2);
CostFactor = p(3);
MaxIter = p(4);
X_train_ext = [X_train ones(size(X_train, 1), 1)];
% X_train_ext = X_train_ext(1:size(X_train_ext, 1), :);
Y_train = Y_train(1:size(Y_train, 1), :);
X_test_ext = [X_test ones(size(X_test, 1), 1)];
%X_ext = X_train_ext;
if (~isempty(X_train)),
% Convert the binary labels into +/-1
Y_train = (Y_train == class_set(1)) - (Y_train ~= class_set(1));
beta = LearnPerceptKernel(Y_train, X_train_ext, KernelType, KernelPara, CostFactor, MaxIter);
if (preprocess.TrainOnly == 1),
save(strcat(GetModelFilename, '.mat'), 'beta', 'X_train_ext');
end;
else
model = load(strcat(GetModelFilename, '.mat'));
beta = model.beta;
X_train_ext = model.X_train_ext;
clear model;
end;
Logit_Y_prob = PredictPerceptKernel(beta, X_train_ext, X_test_ext, KernelType, KernelPara);
Y_prob = exp(Logit_Y_prob) ./ (1 + exp(Logit_Y_prob));
Y_compute = class_set(1) * (Logit_Y_prob >= 0) + class_set(2) * (Logit_Y_prob < 0);
% Learning
function beta = LearnPerceptKernel(Y_train, X_train_ext, KernelType, KernelPara, CostFactor, MaxIter)
extx = X_train_ext;
mextx = size(extx, 1);
% Build the kernel matrix
switch (KernelType)
case 0
kernel = extx * extx';
case 1
kernel = (1 + extx * extx') .^ KernelPara;
case 2
kernel = eye(mextx);
for i = 1:mextx
k = repmat(extx(i, :), size(extx, 1), 1) - extx;
kernel(:, i) = sum(k .* k, 2);
end;
kernel = exp(-KernelPara * kernel);
% kernel = exp(- kernel / (2 * KernelPara ^2));
end;
[num_data, num_feature] = size(X_train_ext);
beta = zeros(num_data, 1);
for t = 1:MaxIter,
pred = Y_train .* (kernel * beta);
beta = beta + Y_train .* (pred <= 0);
if (all(pred > 0)), break; end;
end;
% Prediction
function [L_output, kernel] = PredictPerceptKernel(beta, D_train, D_test, KernelType, KernelPara)
if nargin<4, kerneltype = 0; end;
if nargin<5, kernelpara = 0; end;
switch (KernelType)
case 0
kernel = D_test * D_train';
case 1
kernel = (1 + D_test * D_train') .^ KernelPara;
case 2
% RBFftr = 0.01;
num_test = size(D_test, 1);
num_train = size(D_train, 1);
kernel = zeros(num_test, num_train);
for i = 1:num_test
for j = 1:num_train
kernel(i, j) = (D_test(i, :) - D_train(j, :)) * (D_test(i, :) - D_train(j, :))';
end;
end;
% kernel = exp(-KernelPara * kernel);
kernel = exp(- kernel / (2 * KernelPara ^2));
end;
L_output = kernel * beta;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -