📄 initclusters.m
字号:
% Find K points (columns of m) somewhere in the cloud of the points formed
% by the columns of x.
% If so requested also find K equal standard deviations that are reasonable
% starting values for k-means or EM.
% If so requested, also give K mixing probabilities, all equal to 1/K.
function [m, sigma, p] = initClusters(x, K)
D = size(x, 1);
% Centroid of all the data points
m = colmean(x')';
% Standard deviation in each dimension
sigma = colstd(x')';
oK = ones(1, K);
% K initial means somewhere within the cloud of data points
m = m * oK + (sigma * oK) .* randn(D, K);
if nargout >= 2
% K standard deviations
sigma = sqrt(sum(sigma .^ 2)) * oK / (K ^ (1/D));
end
if nargout >= 3
% K initial mixing probabilities
p = oK / K;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -